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1.  INTRODUCTION AND SUMMARY.

Most numerical approximation processes, such as interpolation, quadrature,
finite difference approximation, finite element methods, and so on,are based
on enact relationships that polynomials (and less frequently, trigonometric
polynomials) satisfy. The simplicity and variety of these identities have
made it possible to construct a vast number of different procedures. These
procedures generally do very well in a region where the function to be
approximated is analytic, and very poorly in a neighborhood of a singularity
of the function.

This paper deals with the approximation of analytic functions f on an
interval, or on a contour. These functions f may or may not have a sin-
gularity, i.e., a point at which f' does not exist, at the end-points of
the intervals or contours. All of the approximations are derived via the
use of exact relationships that the function C(f,h) , i.e., Whittaker's
cardinal function,satisfies. Corresponding to a function f defined on

the real line R , the function C(f,h) is defined by

(1.1) C(f,h) = k-Z £(kh)S (k,h)

whenever this series converges, where h > 0 1is the step-size, and where
sin[g (x-kh)]
(1.2) SE,B) (K] * v i .
f Cckh)
The numerical approximation procedures reported in this paper, and which
are obtainable via the use of S(k,h).¢ as basis functions, where ¢




w3

denotes a suitable transformation of an interval onto R , have roughly
the same accuracy whether or not the function to be approximated has a sin-
gularity at an end-point of an interval. In the absence of singularities,
this accuracy is usually not as good as that obtainable via polynomial
methods, but if singularities are present, this accuracy is much better
than that of polynomial methods.

The function C(f,h) was discovered by E. T. Whittaker [55] who studied
the mathematical properties of this function and who used it as a means
of obtaining alternate expressions of entire functions. He called C(f,h)
""a function of royal blood in the family of entire functions,whose distin-
guished properties separate it from its bourgeois brethren''. The study of
this function was later continued and considerably extended by J. M. Whit-
taker [56,57]. Tr> function C(f,h) then played an important role in
engineering applications in the transmission of information as a convenient
approximation of f (Hartley [16], Nyquist [30], Shannon [37]). Engineers
have since referred to C(f,h) as the '"band limited'" or ''sinc function'
expansion of f .

The mathematical study of the accurate trapezoidal formula approximation
of the integral of a function f over R,

(1.3) JR £(x)dx = h f £(kh) ,

developed independently of the study of C(f,h), although this approximation is
identical to the integral of C(f,h) over R. It was Goodwin {14] who seemed to be
the first to note the incredible accuracy of this formula for approximating
the integral of certain functions that are analytic in a strip about the real
axis. The incredible accuracy of C(f,h) and of the trapezoidal rule as

approximation tools in the family of functions that are analytic in a strip

d

e Rl s L e



-3-

about the real line was later demonstrated in [25,26,27,54].

The application of the trapezoidal formula for approximating an integral
over an interval other than R was investigated in [28,34,39], via the
use of transformations, and it was shown in [45,48] that the most effective
transformations are those that are a conformal map of the domain of analyticity
of the integrand onto a strip about the real axis. Later [49], this trans-
formation idea was used to construct interpolation and approximation formulas
for other intervals as well as for carrying out the approximate solution of
differential [53] and integral equations [18,19,32,36,46,47]. Most recently
[52] all of these approximations were shown to have the optimal functional

1/2

™ ) for the rate of convergence of the error of an n-point

form O(e
approximation, whether or not the function being approximated has singularities
at the end-points of the interval (or contour) of approximation.

Although the present paper is mainly a summary paper, some of the results
in it, such as the results pertaining to the case where a function has a
singularity on the interval of approximation, are new.

The function C(£f,h) is replete with beautiful properties and formulas.
The known properties relevant to approximations are summarized in Sec. 2 of
this paper. These properties are basic to the approximation procedures in
later sections of the paper.

In Sec. 3 of the paper we define a space of functions that are analytic
in a strip about the real line. In this space the identities of the previous
sections are no longer exact, but highly accurate, as shown by the error
bounds.

In Sec. 4 some of the approximations of Sec. 3 are extended to an arbitrary
contour by use of conformal mapping [23,49]. Special attention is given to

the important intervals (0,1] , (-1,1], and [0,»] , and examples are




given, of approximation rules for these intervals.

Section 5, 6, 7 and 8 deal with applications of the previously constructed
approximation procedures.

In Sec. 5 we consider the approximations of important transforms over the
interval (0,»): the Laplace, the semi-infinite Fourier, the Mellin and
the Hankel transforms [22]. |

Sec. 6 deals with approximate procedures for solving ordinary and partial
differential equation boundary value problems [53]. It is here that the
approximation procedures of this paper are particularly powerful, especially
in the cases where the singular behavior of the solution on the boundary is
not known explicitly. The functions S(k,h)*¢ (or product of these for the
case of more than one dimension) are the basis functions. These make it
possible to explicitly write down highly accurate expressions of the inner
products in the Galerkin scheme which reduces the differential equation
problem to an algebraic problem, even for the case of nonlinear differential
equations. Examples of the approximate solution of ''model' problems illustrate
the application of the method.

In Sec. 7 of the paper we apply some of the approximations in earlier
parts of the paper to the approximate solution of (singular) integral
equations. Examples are given, illustrating the approximation procedures.
Here, too, the functions S(k,h).¢ are very well suited for easily obtaining
accurate approximate solutions.

In Sec. 8 we summarize the main ideas used for the implementation of the
methods on a computer, and we list already existing computer algorithms. In
addition we caution the user against possible computational pitfalls resulting
from inaccurate (or improper) numerical evaluation of a function in the

neighborhood of a singularity.




SR

Sec. 9 discusses rates of convergence of the methods of this paper, and
compares theje with rates of polynomial methods. It shows, moreover, that
I
the O(e v ) rate of convergence of the methods of this paper cannot be

improved by any other methods of approximation.
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2.  PROPERTIES OF THE CARDINAL FUNCTION.

Just as polynomials satisfy certain exact relationships in the space of
polynomials of the same degree, the same is true of the cardinal function in

a certain space of entire functions.

DEFINITION 2.1.: Let h > 0, and let B(h) denote the family of functions

f that are analytic in the entire complex plane € , such that

2.1 1£(2)| < ce"lzl/m

’

and such that f € L’R) , where R = (-»,®) . Let k be an integer, and
let us set
sin(z (z-kh)]

(2.2) S(k,h) (z) = —
g (z-kh)

If f 1is defined on R , the Whittaker cardinal function for f with

step-size h 1is defined by

2.3) C(£,h) (2) = E; £(kh)S (k,h) (2)

Set

(2.4) s® = s ,100 - @ 'S0, =
In particular

.




0 if j#k
0 if j=k
(2.4a) s (1= .
jk -1y Kk-J
(-1) if j#k

2 ; k
6.(2)={ =N /5 if j=k

jk k-j
:.ZJ%_ if K

(k-3)

The following theorem summarizes the known explicit relations involving

C(f,h) and S(k,h) , in the case when f € B(h) .

THEOREM 2.1: Let f € B(h) . Then:

(a)
(2.5) £(z) = C(E,h)(z) for all ze€ ¢ ;
(b)
(2.6) J feyde=h J f&h)
R k=-o ;
(c)
2.7) j £ |%ax = h [ |£a)(?
R k=-o

and the set {h'l/ 2S(k,h) }:’_w is therefore a complete orthonormal sequence
in B(h) ;

(d) There exists a unique function g€ LZ(-m/h,n/h) , such that

L SR
(2.8) £(z) = Zi'n r/h e 2t tyat
< den

(e) The function g in (d) is given by
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¢ h T £t
ixt b
(2.9) JR e*e(tyat = # Box<l
0 if x> a/h 6rif x<-% H
(f) .o
1 sSin H (Z't)

Gk £(2) = Hj T e Tk SRV

- r (z-t)
(g)
(2.11) £ € B(h) ;
(h)
(2.12) £ an) = n ¥ aj(;(‘) £(jh)

j.—.-oo

where Gj({:) is defined in (2.4), and therefore, by (2.12),

o

(2.13) gn) x) =h™ 7§ [.Z 6}2) f(jhj] S(k,h) (x)
= -00 JS-N

(1) Let g be defined as in (2.8). Then

X 1 ("/h 1-e” 18X
(2.14) Jrme= g s Lo &

and in particular,

T

1 Jw sin[ (g - k)E]

X
(2.15) JO S(k,h) (t)dt = h[ok + ’ z

where (see Table 2.1)

m .
(2.16) o =+ Jo X

X
Moreover, if J f(t)dt = 0, and if J f(t)dt is in B(h), then
R




‘£
——

| —" A A e

a

X © )
2.17) | twae=n T (1 o fomIsmbe

~®© j=-

(j) Let Pf and Hf be defined by

2.18 s 1 f(t
(2.18) #00 = lin oy jR FO) —ar .
2.19 - EaY f(t)
(2.19) (E#) (x) = =5 JR - dt
Then

im(x-kh)/h_
(2.20) GIORE Z £ P remmyA

and, since Pf € B(h) ,

(2.21) EH() = Z deamy + B T £Gw) [ﬂi———l} S(k,h) (x) 3
...-oo J—wm
j#k
Similarly
(5aae) )00 =i ] £0) & o5 Ccok)s?(0,1) sfCe-kn) ]

k=-co

and since Hf € B(h) ,

2 @@= ] (] foh)[l—(]}—)—nsach)cx) :
-00 J--co

j*k

(k) Llet a>0,andlet az-7 . Then

st il SR . o - « sl Bt Roatias . - s i . —hia RSN~ st > PRV ST
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J f(t)dt
n _‘L[ (x_t)2+a2_]a+1/2

-a m/h E
(2a) J e gt [t (alt]) dt
T I‘(a + 7) -m/h

(2.24)

where g is defined in terms of f , by (2.8), where Ka denotes the

Bessel function,

iam/2 -ima/2

(2.2 K09 = 3 wlsin(a)] (e ™Ey_(ix)-e "2 (1)
and where
(2.26) s = ] (DT
3 m=0 m! T (m+a+l)
In particular
_ [ S(k,h)(t)dt
(2.27) 7, (a,0,h;x) = JR “(_‘lf_)z-aﬂ/z
[(x-t) +a"]
S X ol GRS S TN
7% 1 (a+1/2) j 0 B %
and
(2.28) T (@a,h;2h) = 1, , (a,a,h)
where
2 (zahl'u m GK
(2.29) 7 (8,a,h) = 173 J cos (kt)t a(aht)dt
T (a+l/2) ‘0
Hence

T W e
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(2.30) J _f%%a*-l/z = ng_m £(kh)7y (3,a,h;x)
[(x-t)"+a”]

and if this function is in B(h) , then

(2.51) J——f%ﬂ/z 1 EGR)T _; (a,0,0)} SCh) ()

[(x-t)“+a”] e e

In the cases when a+l1/2 2 0 is an integer, the functions -rk(a,a,h;x) can

be evaluated explicitly. In particular, if o=1/2 , then (2.30) becomes

% JR f(t%dt

[(x-t)"+y"]
(2.32)
.h T s { y(1-e ™M coq 1 ge-ki) /h] + ke i sm[an-kh)/hl}
- (x-kh) +)’
(2)
i JR £(t)log[ (x-t) 2+y?] dt
(2.33)

T il
- 7}:—[- k-zcw f(kh){'Y-log m/h + [1l-cos{m(x-kh)/h}] log [(X-(l;]:l])Ch;% ]

2 J" 1-2-e "M cos{ k) e/} }
0 . '

where Yy denotes Euler's constant;
(m) Let 0<a<1, and let g be defined as in (2.8). Then

[t] ®g(t)e” Xtat

m/h
(2.34) Jn Ix-t|* Lg(e)de = F(a)cg:(m/Z) J

-m/h




=20

and in particular

a m
(2.35) IR lx-tla'IS(k.h)(t)dt - I F(a)c$s(na/2) JO t %cos[(x-kh)t/h] dt ,

so that
(2.3) J -t Leceyae = LIcostro/2) yo
R

Cod us
. J £(kh) j t %cos[(x-kh)t/h] dt
k=-o 0

These results follow from the results in (k) above;
(n) Let g be defined as in (2.8). Then

logix-t| £(t)dt

_1 ("M g-e Xt Ko
-1 J_wh (BRT—20) at - 3 byelog(/m)] (O

(2.37)

and in particular

J log|x-t| S(k,h) (t)dt
" ;

.38 ’ :
(&N --1n { y+log(n/h) - j; Lcos[(xR)E/] g, }
so that

J log|x-t| £(t)dt
R
= il
(2.39) > %,h T £(kh) { yelog(n/h) - j l-cos[(x;kh)t/h] & }
- 0

This result is obtained from (2.33), by letting y + 0 there.
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TABLE 2.1

(s S
Integrals of the Sinc Function from 0 to n : g [ 51:;X dx
‘0

- |

DO~ &Ny —

integral

0.5394898722360836364+00
0.451411666790140314c+00
0.5330932376182719844+00
0.474969669883655078d+00
0.5201071641913085184+00
0.,683205217497747133a+00
0.5144159971233052524+00
0.487374225057819973d+C0
0.511230152636997453c¢+00
0.48988817115387866Cd+00
0.509195742008216617d4+00
0.491568351668600880d+00
0.5077346657812566074c+00
0.492770209374803135a+00
0.5067686944720115794+00
N.493567241517322029584d+00
N0.50595590791717468324+00
0.,4943745528336625213+00
1.53532971044C1588624+00
0.6949364995706954724+80
0.50682260373041718774+00
0.4795396415C848571584+C0
N0.5044035851980504344+00
0.495779766136643166d+00
0.5040515358439446464+C0
N.6961041974885153474+00
0.50375159503190914624+00

"0.6963823201653520644+00

0.5034929932779404184+C0
0.496623386631180065d+00
0.5032677369477718224+00
0.4968343388552227594+930
0.5030697682021874672+00
0.497020487027667043d+00
0.5028944125557013264+00
0.497185962335964750ad+00
0.502738005382438294d+00
0.4973340269269066314+00
0.5025976332159276504+00
0.497467290977560678d+00
0.502470950690821481d+00
0.4975878678043931084+00
0.5023560485249013354+00
0.6926974867059373354+00
0.502251356677318093d+00

" 0.497797576391022357d+00

0.5021555722141229694d+00
0.6978893275646683974+00
N.502067606827651950d+00
0.497973740503081827d+00

integral

0.5019865351657795144+00
0,4980516616563337954+00
0.5019115825934450874+00
0.4981238121215729284+00
0.501842079980753156a+00
0.64981908100179335644+00
0.501777453798%251554+0N
N.4982531882343345324+00
0,5017172082611157094+02
0.6983114086292756004+C0
0.5016609125833090532+C0
0.6983658734834104543+C0
0.5016081906689415734+07°
0.64984169348055851542+00
0.5015587126985115424+C0
D.4934K49019474762124+00C
0.5015121882244933924+00
0.4935100478749203812+0C
N.50146836046682655634+00
Ne69855261463445059564+C0
0.5014270015722503654+00
0.4985928163343134174+00
0.501387908652699940d+00
0.4986308454725850814+0Q0Q
0.5013506004573349304+C0
N,6986668732935892594+00
0.5013158145633705212+00
0.4987010537234768244+090
N.5012825049928004784+00
0.498733525298349206d+090
0.5012508401830419504+00
0.69874544130407322434+010
0.5012207012502377434+00Q
0.49879383C0048040258d+00
0.5011919804979525944+Q0
0.698821878976649611d+00
0.501164580131481855d+00
0.4988486530372720674+Q90
0.5011384111454785204+00
0.49887462372309749934+00
0.5011133923582398764d+00
N.498898709150092725d+00
0.5010894495705804414d+00
0.4698922139734147706d+Q0Q0
0.5010665148309348174+00
0.698944594207547635d+00
0.501044525791360742d+00
0.49896561321830880414+00
0.5010234251415907154+00
0.4989868086930455034+00




3.  APPROXIMATIONS OVER THE REAL LINE.

Whereas the relationships of the previous section are exact, each of
the formulas (2.4), (2.6), and (2.9) provides a method of approximation
for the case when f does not belong to the class B(h) . We thus intro-
duce another class of functions defined on R = (-®,») , for which the
approximations referred to above are extremely accurate. At the outset
we investigate the error of the approximations for the case when the complete
set of points {kh}:g:_m are used in the approximations.” We then also
investigate the error of approximation when only the finite set of points

{kh}:,_N is used, and h is chosen judiciously.

DEFINITION 3.1.: Let d > 0, and let Dd denote the domain

(3.1) = {z€ L |mz| <d}.

Dy

Let p>1, and let Bp(D d) denote the family of all functions f that

are analytic in ‘Dd , 'such that
d
(3.2) J |[f(x+iy)|dy 0 as x+ t o ;
e _
and such that N P(f’b d) < » , where
' 1/p
N (£:09) = 1in {C | |£Gevi) Pa)
A y=d”t R

(3.3) 1/p
R (J |£(x-iy) [Pax) } :
R

*An exception occurs, of course, for the case of Eq. (2.10).
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If p=1, we shall simply write B(Dd) and N(f,vd) instead of Bl(Dd)
and Nl(f,vd) respectively.

Let us set
sinffr (x-kh)]
S () » S
p (x-kh)

C(f,h) = of f (kh)S(k,h)

k=-

(3.4) 4

N
GEN = ] fkDS(K,h)
k=-N

E(f,h) = f - C(f,h)

Ey(£,h) = £ - Gy(£,h)

The most effective apnlication of the formulas of this section occur for

the case when f € B(d) , and when

(3.5) 1£60)| < ce @Il

for all x€R , where C and o are positive constants.

QLA il
it idalitida, .
L .....-..-"'D’--r‘-.-raa‘-'n'-‘-lmjﬁﬁ:-n -
i1l f [y ]

ol LR Lipgs!
RS R SNTNEY! l Ll I
vd

FIGURE 3.1 The Region Dd of Bg. (3.1).
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3.1 Error of Approximation by C(f,h) .

The error of approximation of a function f in BD(D d) by C(f,h) may
be expressed explicitly as an integral [27].

THEOREM 3.1: Let f € Bp(Dd) . Then for all x €R

. N0 s
E(£,h) () = S J { fltd)
21 R (t-x-id)sin[ﬁ (t-id)]

(3.6)

f(t+id) } a
(t-x+id)sin[;{ (t+id)]

This result forms the starting point for obtaining the error of many different

types of approximations. In particular the following theorem was proved in

[46].

THEOREM 3.2: (a) If f € B(Dy then”

1/2 N(£,0)
(3.7 md VE(E,WI, , 2(nd) T AECEW ) S SERTRAZRY

(b) If £€B,(0,) , then

(3.8) VE(£f,h)I 2( d)l/z IEEN . < Nz(f’vd)
g ’ ’ T <
: == s

*Actually, the bound on IE(E,Hjlz is new. It is obtained via a direct
application of the inequality l«tlz < lfl2 lgll , where ¢(x) = }R f(x-t)g(t)dt
and vhere f€ LZ®R), ge L!®) , to (3.6).

1.
(€) 1f £€B(0y) , 1Sp<=, =+ =1

T

e

B —



«17=

then

(3.9) VECE,h)I < 1 P(gi‘l)r(%) Vay (£,

)

— d
| [ . - &
| )P @

sinh (T)

\ We remark that once we have bounds on lE(f,h)lZ and VE(f,h)I_ , we

' can get the bound on |E(f,h)ls , for any s between 2 and ~ , via the

i inequality
| (3.10) LECE T < TECE,WIY/S 1e(e 2o i
COROLLARY 3.3 [49]: " Let the condition (a), (b) or (c) of Theorem 3.2 be 4

satisfied and let f satisfy (3.5). Then by choosing h = [nd/(aN)]l/Z

1/2
1/2 - (mdaN)
(3.11) PEV(£,h)H < C N/ e ®

% where C1 depends only on f, d and o , and for appropriate* s , as in

Theorem 3.2.

* If bounds on both lE(f,h)lz and IE(f,h)l  are given in Theorem 3.2,
then (3.11) holds for all s € [2,«]

R P

——

f -
%
14
£
&
!
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3.2 Error of Quadrature by the Trapezoidal Rule.

Let f € B(Dd) , and let us set

(
() = | Ey(ER) ()

(3.12)
: N :
=J f(x)dx-hz f(kh) z
R - k=-N
and
(5.13) n(£,h) = lim ny(£,h)
New

The error n(f,h) may be obtained by integrating (3.6) using residues.

yields (22,26,27,45] the following theorem.

THEOREM 3.4: Let f € B(Ud) , and let n(f,h) be defined in (3.14).

(a) Then :
viaTye- (d-it)T/h . 17ya-(d*it)T/h
(3.14) n(f,h)%f { £ T’;d i2 (f(e-td)e " } dt
R U sin(g (t+id)] sin[% (t-id)]
Moreover,
1 e-n'd/h
(3.15) In(£,h)| £ _— N(f,vd)
sinh(rd/h)

If in addition f satisfies (3.5), then by taking h = [21d/(aN)]%/2

1/2
(3.16) |ny(£:h)| g Cye” (27doN) ;

where ¢ depends ohlyon f,d and a .

This
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3.3 Fourier Transforms.

In this section we shall give a bound on the error of the approximation used

in the Fast Fourier Transform method [49].

Let E(f,h) and EN(f,h) be defined as in (3.4), let x € R, and let

us set

sN(Eh) () = fm ™t £ (£,h) (t)dt

| j £(t)ei*tat - h I; £(jhyel X x| < T
(3.17) R N # h
=

Jf(t)elndt ool

R
and
(3.18) . 8(£,h) = lim & (£,h)

Nes

N Sy
Eq. (3.17) tells us that the sum h | f(jh)e1Jhx is not to be used to
Je==N

approximate Iemf(t)dt if |x| >w/h . By replacing f£(t) by f(t)eixt
R
in (3.15), we get

THEOREM 3.5: Let f € B(Dd) , let x€R, |x| <w/h , and let &§(£f,h) be

defined as in (3.19). Then
- (d-iu) (F+x)

1 f(u+id )e
§(f,h =
(£,h) (x) = ¢ IR { sin[%(u*-i.d)]

. =(d+iv) (g -x)
_ f(u-id")e

} au
sin{g(u-id)]

(3.19)




BT o0 ey

20

and so

(3.20) 16(£,h) (x)] < 1 idia: e Sl
. ’ p. S5 e
2 sinh(3S)

COROLLARY 3.6 [49]: Let the conditions of Theorem 3.5 be satisfied, let

£ satisfy (3.5) on R, and let h = (rd/aN)/2 . Then

1/2
(3.21) |6y(Em ()| < Ce” (TN T iy < m

where C1 is a constant depending only on f, d and « .

.

| A b s i
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3.4 Approximation of Derivatives.

In applications it is often desirable to approximate both a function
as well as some of its derivatives. These derivative approximations are
readily obtainable by differentiating CN(f ,h) . Bounds on the error of
approximation of f(n) on R by CN(f,h) (n) are readily obtained by
bounding the integral [29]

£cE,h) ™ ()
R I {l xf sin(n-j)(lrﬁ)s)(“/h)n-j I £(t-id)
(3.22) R Ul 530 (@-§)1ce-x-id)I*? sin[f(t-id)]

n sin®3) (%) (/)"

[ £(t+id") } dt

520 (n-j)!(t-x+id)l*L sin[f(t+id)]

which follows from Eq. (3.6). The details of bounding E(£,h)™ and

EN(f,h) (n) are carried out in [251. We state some of these results.

THEOREM 3.7: Let n 2> 0 be an integer. (a) Let f € B(Dd) , and let
md/h > 1 . Then*

/2 N(ED
(3.23)  VE(£,h) (“)12 s nls g (2 & (r/h)"
= 2(nd) Y/ h® .1/4  sinh(nd/h)
Q-
md
and
n! e N(£,0) (n/m)"
(3.24) 1EcE,h) @i < s
2nd sinh(md/h)
*see the footnote on page 16 re.the 1E(£,h) ™1, - bound which is {
new.
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(b) Let fe€ BZ(Dd) , and let nd/h > 1 . Then

n! e Nz(f,Dd) ("/h)n

2m sinh(nd/h)

(3.25) 1E(£,h) (“)uz <

and

n! el/2 N, (£,0,) K

g I S
Z(ﬂd)l/z(l__%) sinh(md/h)
a

(3.26) 1EC(E,D) @i <

COROLLARY 3.8 [25]: Let f satisfy the condition (a) or (b) of Theorem 3.7,
1/2

and let f satisfy (3.5). Then by choosing h = [nd/(aN)]

uEN(f’h) (n) I % = lf(n) 'CN(f,h) (n)us

(3.27)

n+l
1/2
< Cl N—Z_ e-(ndaN)

for any s in [2,»] , where C1 depends only on f, d, a and n . In

particular, with 6}2) defined as in (2.4),
n+l

N 3/
3.28) €™ n)-p™ ¥ f(jh)éj(ﬁ)l SCN Z ¢n(ndolD)

Jm=N

COROLLARY 3.9*: Let the condition of Corollary 3.8 be satisfied, and on R ,

let

(3.29) E™ | < Cze-aIXI

Then there exists a constant C3 depending only on f, d, « and n , such

that 1

*This result is believed to be new.
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n+3

1/2
3.30) [f™x) - h Z (_Z f()h)é(n))s(k h) ()| < CN 2 ¢ (7o)

The approximations (3.28) and (3.30) are useful in the solution of

differential equations.

Y S N N N Ry e

3
e — — .
- i} o~ o8 -y % -
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3.5 The Indefinite Integral.

Let us present an approximation of

X
(3.31) I(x) = J f(t)dt
in temms of the values f(kh) of f [21].

THEOREM 3.10: Let f € B(Dd) , and let g€ B(Dd) where

Bx

(3.32) g = I(X) - =——p I(=)
BX, -BX
and where
(3.33) 0<e<%
on R, let
(3.34) 1£)] < ¢ e Ixl
and let
(3.35) a = min(a',28) .
Then for h = [rd/(a)]/? ,
X eBx
J;fmm-ﬁaﬁiijm
(3.36) N N
n {1 ot —2— [ f0dn) | skm )|
k=-N 'j=-N (eBJh+e.BJh) R

1/2
'<_ ClN e-("daN) /

5~




R —

——

- f___

2B
where % is defined in ( 2.16, and where C1 is a constant depending only on

f,d and a .

In applications it usually suffices to take 8 = 1/2 or 1 , changing d

instead.
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3.6 The Hilbert and Related Transforms.

Given f € Bp(Dd) , P21, each of the integrals: the projection integral

(3.37) P (x) = 1lim - [ £(t) 4
Y*0+ 2ri ‘R f-x-iy

and the Hilbert transform integral

(3.38) (HE) (x) = B JR T8 4

clearly exist. These integrals are important in applications dealing with Fourier
transforms such as in the solution of integral equations of convolution type. We
Shall give approximations of these integrals in temms of finite sums of (2.20),
(2.21), and (2.22) and (2.23) and we shall give bounds on the error of these

approximations.

THEOREM 3.11 [46,49): Let f€B (D) ,15p<e , and let E(f,h) be defined

as in (3.6). Then

PIE(£f,h)](x) = - zlﬁ j {[e’“”°/h+e‘iTr (t-1d)/hy iy _iq)

R (x-t-id) sin [% (t-id)]
(3.39) : ,
| [eim/hein(t+id)/hy f(tﬁd)} 5
(x-t+id) sin [ g (t+id)]
and
HEEmI () = - 4 [ { [cos (nx/h)+e” T (A M) £p i)
EAl (t-x-id) sin [w(t-id)/h]

(3.40)

+

[cos (mx/h)+e™™ DM £ paig) } av
(t-x+id) sin [w(t+id)/h]
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Moreover, if p=1 , then

| 1+ 3 2R wrpg
(3.41) APIECE,W]H, <
’ 2nd sinh(rd/h)
-td/h  N(£,D
(3.42) HIECE, I < 1Ee - (£,0y)
2nd sinh(nd/h)
while if p=2 , then
| 1+ 300w
(3.43) IPIECE, I <

2(nd)/?  sinh(rd/h)

-nd/h N(E,D
(3.44) IH[ECE,1. < Lre "12 el ;
® = 2ad)*%  sinh(rd/h)

Furthermore, if llE(f,h)I2 is bounded, then

i (3.45) ' IPIECE,) I, = IH[ECE,W)]1, = NECE;h),

In addition, if p is either 1 or 2,if f satisfies (3.5) on R, and if
h = [nd/ (V)]
| and a , such that

, then there exists a constant C1 depending only on f, d

: N i (x-kh) 1/2
| _ 1 " 3 1/2_ - (ndaN)
| 3.46) P - £(kh < C.N
( RN = o oy UM S L_
47 l. HE . £(kh)-T(x-kh)S2 (0, 1) XKy < ¢ N1/2 - (nda) 1/
(3.47) HEY(x) - i X-N (kh)m(X‘ )S°(0, HT] s =4 e

for all s € [2,=] .




oS

<98~

We remark that if f satisfies (3.5), then so do Pf and Hf . Conse-

quently, we have (see (2.21) and (2.23)).

THEOREM 3.12: If f € Bp(vd) , p=l or 2, if f satisfies (3.5), and if
h = [ﬂd/(aN)]l/z , then there is a constant C1 , depending only on f, d and

o , such that®

N N k-j
1 K ik Y
1PE - 3 ny| B 71 | ek nyi
SIMES 7l £G)| - | saom,
(3.48) j*=k
<q Ns/ze-(ﬁdmN)l/2 3
and
Liag
e -1} {Z f(:h)l—(a—)—'}sac,h)ls
JJ;k
(3.49)
&6 N/ ze'("d"'ml/2

for all s € [2,=]

*These results are believed to be new.

LN s S 5 s
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3.7 Singularities on the Interval of Approximation.

In this section we consider the extension of the results (k), (%), (m)
and (n) of Theorem 2.1 to approximation in B(D d) . These results are particu-
larly useful in the solution of singular integral equations in more than one

dimension. These results are belived to be new.

THEOREM 3.13: Llet f € B(Dd) , and let Tk(a,B,h;x) be defined as in '(2.27).

Then for 1<p<w,1/p+1/q=1, and p(8+y) >3

£(t) dt pt .
B2 k=z-w f(kh)7, (a,8,h;x)
R [(x-t)%+a?]
(3.50) % 1/p -1, 1/q
1/2 % - 2841/2) ) ‘ [ (P(8+2) - 1/2) ‘ i A \ Mk Sy
ML : r(p(g+ 1/2)) I‘(%) sinh(md/h)

Moreover, if f satisfies (3.5) and if Tk(a,B,h) is defined as in (2.28) and

(2.29) then there exists a constant C1 depending only on f, d, « and a such

that if h = [rd/(@N)]Y/?,
N
f(t) dt
12 - Ly 1.1, FOMT5(@.8.0) SR ()
I R (x-n%al) o {J"N /

(3.51)

1/2
, <cC NS/Ze-(wdaN)

1

In particular, if a=0 and - %-< <0, then for f as in (3.50) ,

‘ Inf(t)lx-trzs'ldt - n28 L(-2B)cos(nf) T £ Iot cos [ (x-kh) t/h]dt

(3.52) 1 e
T(-8)r(p8)  N(£,0p)

1/ 220d%*28  sinh(rd/h)
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and if £ satisfies (3.5), then for h = [ﬂd/(aN)]l/z

28 N
IJ £(e)] -t L g - KT CIIcos(rm) { 1 €6 [ ¢cos((k-g)tidt}s
k=-N 'j=-N 0

(3.53)
3/2, - (ndol) 1/

-S(k,h)lm < C1 N
where C1 depends only on f, B, a and d .
Equations (2.32) and (2.33)yield solutions to Laplace's equation in the

upper half plane. Let u satisfy

(3.54) un+uw=0,x€]R,y>0
and either
(3.55) 11m u(x,y) = £f(x)
y-»O
or
(3.56) 1im %ﬂ = £(x)
y+0+ Y

THEOREM 3.14: Let u be the solution of the Dirichlet problem (3.54), (3.55),

where f satisfies the condition of Theorem 3.2. Then

=:|:r

IU.(' tY) i

Z £n) {£ld=e 7 cos n(-kh /me (ke ™ Psin{n (k) /m) h
(--kh) “+y

(3.57)

S VECEMI

where lE(f,h)lp is defined and bounded as in Theorem 3.2. Moreover, if f also
satisfies Corollary (3.3), then by choosing h and s as in Corollary 3.3,

RG> St b i
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N N -my/h k-j
h Y (1-e )(-1)
u(e,y) = £(jh) S(k,h)
Ly 1,2y FonrE ) saum,
(3.58) “
1/2
< C1 N3/2e-(wdaN)

where C; depends only on f, d and a .

THEOREM 3.15: Let f € B(Dd) , and let

(3.59) M(a, £, D) = J [|£(t+id™) |+|£(t-id")|]log[ (t-a)2+d?]dt < = .
R

for all finite a € R . Then the function u=u(x,y) ,

(3.60) aCey) = 4 [ tosloen e
which solves the Neumann problem (3.54), (3.56) satisfies

© A
e ,y-L 3 fckh){-v-logn/hm-cos{v(--kh)/hmog[('—"‘ﬂl—*y—l
2m T (--kh)z

i I“ 1-(z-e'tY/h)cos[(o-kh)t/h]}dt,°°

(3.61) 0 t

M(a, £, vd)e'“d/h+4(h/d)N(f,v
8wsinh(wd/h)

F)

Moreover, if f satisfies (3.5), and if

(3.62) LR f(t)dt =0 ,

then for h = [nd/(@)Y/?] ,

s o i

e ————————
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: ;
Iu('.)’)"Zh?k—Z {Z fuh)tl(l)k’llosl—lL’—z— |

:
W 2 o . ~t¥/h ‘_.
(3.63) 3 j 1-(2-e Ycos [ (k Dt] g, } S(k,h)i_ !
0 t
1/2 ‘
< C1 N3/2e-(wdaN)
where C, depends only on f, d and o . In particular, if y=0 , (3.63) re-
1 1
i duces to
f N N T :
| J log|--t[£(t)dt—t J { ) f(jh)J bessifeiit] g }S(k,h)um i
! R =-N 'j=-N 0 t
l j#k ]
| (3.64)

1/2
< N/ 2" (rda) /




4. FORMULAS OVER FINITE, SEMI-INFINITE INTERVALS AND CONTOURS.

In this section we shall consider the extension of some of the formulas
of the previous section to finite and semi infinite intervals, and more generally,
to contours [45,49].

The success of the methods of the previous section for functions in 0 d
suggests that a problem over an arbitrary interval be transformed into one over
(-»,») in such a way that the conditions of the theorems of the previous section
are satisfied. In this way, some formulas over contours other than (-«,») may
be obtained directly. However, not all formulas transform directly, and we must
make certain simple 'adjustments' in order to make direct transformation possible.

The following definition is fundamental for the remainder of the paper.

DEFINITION 4.1: Let D be a simple connected domain, with boundary 50 , let

a and b#a be points of 30 and let Dd be defined as in (3.1). Let ¢ be
a conformal map of D onto I’d , such that ¢(a) =-=, ¢(b) = o . Let

v=¢"1 denote the inverse map, and set

(4.1) F={yx) : @w<x<o}

‘Given ¢ and y , we denote by 2, = z1(h) the points

(4.2) 2 = y(kh) , k=0,%1,%2,...

Let B(D) denote the family of all functions F that are analytic in 7V , such
that

(4.3) |F(z)dx| 0 as u+ =

I ¥(u+L)




——

=B
where
(4.4) L={iy : y is real , |y| <d} ,
and such that

(4.5) N(F,0) = 1lim inf J |F(z)dz| < =
C

Cl*BD CICD 1

We remark that if F € B(D) , then f defined by'
(4.6) f = [Foy]y'

is in B(Dd) as defined in Definition 3.1.

Let us next give four commonly used transformations ¢ and the corresponding

inverse functions ¢ , corresponding intervals I = [0,1],[-1,1]

EXAMPLE 4.1: T = [0,1] . In this case

(4.7) D={z: |arg 2| <4},
1~z

FIGURE 4.1 The Region D of Ex. 4.1.

The boundary of D consists of two circular arcs which intersect with angle 2d

at 0 and at 1 .

and [0,»] .

R




-

 pg———
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The function ¢ , the inverse function y and the points z) are given by

(4.8)
tanh(kh/2) , k=0,%1,%2,...

N =

o |
o B
EXAMPLE 4.2: T = [-1,1] . In this case
1+2
(4.9) D= {z : Iarg(itzjl < d}

The functions ¢ and ¢ and the points 2) are given by

W= (2) = log({)y= 2 = y() = tanhy

2
(4.10)

z, = tanh(kh/2) , k=0,¢1,%2,...

FIGURE 4.2 The Region D of Ex. 4.2.

We shall give two examples for the case I = [0,»] . The first of these is
useful in the case when the function f to be approximated is analytic in a
sector, |arg z| <d , while the second is useful if f is analytic only in a
strip of width 2d sywmetrié about the real axis (more precisely, in the region

D of Ex. 4--see Figure 4.4).

S RS Ny ———— R T | -~ U U T S ST T L T T —_
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EXAMPLE 4.3: T = [0,»] . In this case D is the sector

(4.11) D={z: |arg z| <d}

FIGURE 4.3 The Region D of Ex. 4.3.

The functions ¢, and the points 2, are given by

w=9¢(z) =logz=z=yw =e"

(4.12)
ekh

7, = , k=0,%1,+2,...

EXAMPLE 4.4 [22]: T = [0,«] . In this case

i
-

(4.13) ‘ D= {z : |arg sinh(z)| <d} , 0 <d < 7/2

FIGURE 4.4 The Region D of Ex. 4.4.
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The functions ¢,y and the points 2 are given by

w = ¢(z) = log[sinh z] = z = Y(w) = log[ew+/ 1+e2w ]
(4.14)  z, = log[e P/ 1ve2B | k=0,11,2,..
= ekh - %-eSkh & f% eSkh - T%? e7kh & ...,ekh <
kh

The expansion in (4.14) is preferred if e

= log[ekh+/ ZKh

1+e™""], while mathematically exact, is computationally inaccurate
kh

< .1 since the formula

%X
for small e In applications, the accurate computation of f(zk) , where
f(zk) is to be approximated, is important, especially near a singularity of
f (see Sec. 8.2).

We shall next review ‘the known results corresponding to those in Sec. 3

which may be extended to approximation over a contour I as described in Def. 4.1,

albeit some minor modifications. These modifications are described in the

theorems, as we shall present them.

The condition (3.5) takes on a simple general form: let g be defined on

I , and let

(4.15) ()] < ce !¢

for all x€ T , where C and o are positive constants.
Two identities play an important role in obtaining all of our bounds. These

are described in the following theorem.

THEOREM 4.2 [49]: Let F € B(D) . Then the identity

Py —
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Fw _ § F (z)
¢'(x) m-o ' (Zk)

S(k,h) ¢ (x)

. sin{m¢(x)/h] f F(z)dz
2ri D [¢(2z)-¢(x)]sin[m$(z)/h]

is valid for all x € I . Moreover

o  F(z,)
f F(x)dx-h J k
T k=- 9" (2)

(4.17)

exp [—};-—i"d’(z) sgn Imd(z)]
J - F(z)dz
90  sin[m¢(z)/h]

Do) =

We remark that (4.17) is obtained from (4.16) by multiplying (4.16) by

¢'(x) and integrating over T .

e .
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4.1 Interpolation over T .

THEOREM 4.3 [45,49]: Let ¢'F € B(D) . Then

o<}

(4.18) [F)- [ F(z)S(k,h)ee(x)| < N(¢'F,D)

=00 2nd sinh(wd/h)

for all x€ T . Moreover, if F is bounded on T by the right-hand side of
(4.15), then by taking h = [rd/(aN)]Y/2

3 1/2_ - (doN) 1
(4.19) [F(x)- ] F(z,)S(k,h)ed(x)| < CN e

/2

for all x€ I' , where C1 depends only on F, d and «o .
It may happen that F € B(D), but ¢'F & B(D) . If the limits

lim F(x) = F(a)
x>a
(4.20)
lim F(x) = F(b)
x+b
exists and are bounded, where the limits are taken along T , then it may also
be the case that ¢'G € B(D) , where
(4.21) G=F T—e-% F(a) ——%———We% F(b)
- = - ——— a -
e® + o7 +e

e e

This device is often useful in applications.
Let us next illustrate the formula (4.19) and (4.21) for the case of the

transformations in Examples 4.1 to 4.4.




——
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EXAMPLE 4.5: For the case when T = [0,1] , let F be analytic and bounded
in the domain ? of (4.7). On [0,1] , the condition (4.15) becomes
(4.22) [F(x) < ¢ x*(1-0°

If F satisfies (4.22) on [0,1] , then by taking h = [rd/(aN)]Y/2 , (4.19)

becomes
11k
P(x)u.% sin{% log I%;} ; Fizk)
=-N 10g (1—_?) -kh
(4.23)

1/2
< ClNl/Ze-(ndaN)

where 2y is given by (4.8), and where C1 depends on F,d and o . If F
does not vanish on 0 or at 1 , the functicn G of (4.21) may, provided that

the limits (4.20) exist. The function G takes the form
(4.24) G(x) = F(x)-(1-x)F(0)-xF(1)

We remark that if F € B({) and if F € Lipa(ﬁ), where 7 denotes the closure of
D, then ¢'G€ B(P) and G satisfies (4.22) on [0,1] [36] . The formula

(4.23) does a good job of interpolating functions such as
F(x) = xl/s(l-x)'l/zlog x , or F(x) = sin(mx)log(l-x), etc. on [0,1] .

The case of I = [-1,1] 1is similar to that of T = [0,1] .
EXAMPLE 4.6: Consider the case of D as in Ex. 4.3, with I = [0,»] . Let
F be analytic in the sector (4.11). On [0,»] , let F satisfy

o 3
(4.25) IF(x)| < {Cx_ if 0<x<1
&Y # 1€xg- ,

[
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a condition which is equivalent to (4.15). Then by taking h = [1rd/(0tN)]1/2 :
(4.19) becomes

| N k.. kh
Feo-B sinf 10g x3 ] LLFED

(4.26) =-N log x-kh
1/2
< C1N1/2e- (mdaN)
where C1 depends only on F, d and a . If F does not vanish at 0 or at

«» and if the limits (4.20) exist, then we may be able to effectively apply (4.26)
to G (see Eq. (4.21)) where

(4.27) G(x) = F(x) lix F(0) T3z F(=)

The formula (4.26) does an accurate job of interpolating functions F such as

2/3

F(x) = x*“(log x)/(1+x) , or for F(x) = xs/ze-xsin x/2 , etc.

EXAMPLE 4.7: Let us again take T = [0,»] , for the case of Ex. 4.4. For this
case the condition (4.15) becomes

C 3" if 0gx%1

(4.28) IF()| < {C

e'O.X

If ¢'F€ B(P) and if F satisfies (4.28) on [0,»] , then by taking
h= [1d/(@)]Y? | we get

k
N (-1)7F(z)
) (ST p 2%
F(x)-2 e 1 nh x]} et A
(x)-= sin {f log[sinh x] k-Z-N ooy

(4.29)

1/2
< C1N1/2 . (rdaN)

for all x € [0,»] , where 2 is defined in (4.14) and where C, depends only

1




i3

on F,d and a . If F is analytic in D but if F does not vanish at 0
or at = , then the function G may satisfy the conditions of Theorem 4.3

well as (4.28), where

(4.30) G(x) = F(x)-—i— F(0)-—S1h X ¢,
1+sinh x 1+sinh x

The formula (4.29) does well at interpolating functions over [0,»] which may

be oscillatory on (0,») , but which may have a singularity at x=0 . For
example, (4.29) does well at interpolating F(x) = xalog[l-czg%lﬁz] &
4/5e-x

, OF

F(x) = x
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4.2 Quadrature over T .

Eq. (4.17) yields the following theorem.

THEOREM 4.4 [45]: Let F € B(D) . Then

© F(zk) l » e-ﬂd/h

@30 | [ Feodch :
T k=-= ¢'(zk) 2 sinh(md/h)

N(F,D)

Moreover, if F/¢' satisfies (4.15) on T , then by taking h = [21rd/(oLN)]1/2 2

; N F(z) 1/2
(4.32) , Jr F(x)dx-h J X | S B

=-N ¢' (sz

where C1 depends only on F, d and a .

EXAMPLE 4.8: Let T = [-1,1] , and let F € B(D) where D is defined in (4.9).

On [-1,1] , let
(4.33) IFx)] < C (1-x2)°‘-1 ,a>0 -, £320,
a condition equivalent to F/¢' satisfying (4.15) on T = [-1,1] . Then by
taking h = [2nd/(aN)]Y2
N

1 . kh
2e e
F(x)dx-h £(
‘ I-1 % kaN (1+e") %

kh

-1)
ekh+1

(4.34) y
1/2
< Cl e-(anaN)

where C1 depends only on F, d and a . The fornula (4.15) yields accurate

results for the integration of function F such as F(x)-(l-x)'1/3(1+x)'3/510g(1-x)

or F(x)=(1-x) Yexp(-2/(1-x)}
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EXAMPLE 4.9: Let T = [0,~] , and let F € B(D) where D is defined in (4.11).
On [0,»] , let

C xa-l
(4.35) IFOO| < {C _-a-1

’ ’

IA

a condition which is equivalent to F/¢' satisfying (4.15). Then by taking
h = [2nd/(aN)]1/?

¥ B 1/2
(4.36) l Jo Fodeh | eMpekh| < ¢ o (21da)

=-N
where C1 depends only on F, d and o . The formula (4.36) does an accurate

job of integrating function F such as F(x) = xa'l/ (1+x) 2a
3/2

, OF

X

F(x) = x 7 “sin(x/2)e”

EXAMPLE 4.10 [22]: Let T = [0,o] , and let F € B(D) , where D is defined

in (4.14). On [0,»] , let

IA

X

IA

1 } a>0

]

a-1 .
(4.37) e Db
P s -

A

X

N

a condition which is équivalent to F/¢' satisfying (4.15). Then by taking
h = [2nd/@N)] Y2

l J: F(x)dx-h g —+ F {log[ekh+ V 1+eK0 ] } l

k=-N 1+e
(4.38) 1/2
< Cl e-(ZﬂdaN)
where C1 depends only on F ,d and a . The formula (4.38) does an accurate
job of integrat%ng functions F such as F(x) = x'l/zlog[l-&g—x-]e'xn ;
F(x) = x 27X , or F(x) = x'sexp{-[(x-S)2+2]1/2-1/x2}sin(3x)

i

S A -~ g— PN P SRS = V= ——
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4.3 Approximation of Derivatives on T .

Except on R , the formula (4.18) is not useful for accurately approximating
derivatives of F on T , since the terms ¢'S(k,h)°¢ are unbounded on T .
Then to get a formula for approximating f(m) on I it becomes necessary to

modify (4.18) by introducing a "nullifier'" function g with the property that
0
) 18IS(k,h)e4(x)

is bounded on T , for n=0,1,...,m . Upon replacing F in (4.16) by F¢'/g

we get

THEOREM 4.5 [25]: Let F¢'/g€ B(D) . Then for all x€T ,

© F(zk)
F(x)- ] g(x)S(k,h) °¢(x)
=-0 g(zk) =
(4.39)
- g()sin[m6(x) /h] J F(2)¢'(z)/g(z) dz
s 30 [0(2)-0(x)Isin[re(2)/h]
Let
(4.40) | [ g ]n £x) sin[m()/h] | < cpm

¢(z)-¢(x)

for n=0,1,...,m , forall x€T and z € 3D , where C, is a constant

2
depending only on m, g and F . Then there exists a constant C3 , depending

onlyon m, g, d and F , such that for all x€T ,

n o F(z,)
FM 0[] 1 BOOS(M) ()
k=== g(z,) ';

(4.41)

< C:,,h'n e T/h s 0150000
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Moreover, if F/g satisfies (4.15) on T , then by taking h = [nd/(aN)]l/z "

then for all x€ T

n N F(z)
™ - (& I 25 (K,h) o4 (x)
k=-N g(z,)

(4.42)

n+l _ 1/2
<C NZ e (mdaN) 0L

where C1 depends only on m, gd, F and a .

The function g takes on different forms for different values of ¢
although g(x) = [1/6'(x)]™ is usually satisfactory. In addition Theorem 4.5
presupposes that all derivatives of F vanish at a certain rate as x»a and as
x>b along I . We shall present special forms for g as well as procedures
for making a number of derivatives of F vanish at a and at b in the

examples which follow.

EXAMPLE 4.11 [25]: Let I = [-1,1] , and let D be defined as in (4.9). Let

us take
(4.43) g(x) = (1-xH)™

and let us assume that ([Fé'/g] € B(D) where F(x)¢'(x)/g(x) = 2F(x)(1-x) ™1 |

Furthermore, on [-1,1] , let us assume that

(4.44) W o EB | < camd)®
g(x) (1-x )“‘l

a condition on F/g equivalent to (4.15). Then by taking h = [1rd/(mN)]1/2

k m
M) or () [ h 2l e 1o ltx, ¥ CDF()/Q-2)
IF a5 [a’?] { ol B, log(ﬁ”k-z-n 103[{_;]-161 } '

(4.45)

n+l 1/2
SCNZe (mdaN) , n=0,1,...,m *
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for all x€ ' . More generally, let F(m) be analytic and bounded on 0 and
r(m ¢ Lipa(ﬁ) , where D denotes the closure of D . In this case (4.44) may

not be satisfied. However, the function
(4.46) G=F - Py

satisfies (4.44) as well as all of the other conditions required in (4.45), where

P is constructed as follows. Set

S Py(x) = 2, — % 1%5
where
(4.48) a0 = f(-l) ; b0 = £(1)
and
1-41K%2 1 k+1 1- k+1 1 k+2

(43) Py Bl =Ry tR) ak+:("f'1 {"%?% g bk+1{—7§} [‘55% :
where

k+1 .

& (k+1) (k+1)

® e [f (-1) - p (-1
17 o -

(4.50)

k+1
Brs1 = (;izl)l e s e

EXAMPLE 4.12 [23]: Let I = [0,] , and let F be analytic in the region 0

of Eq. (4.11). Let us assume that F(m) exists on [0,»] , let us take
g(x) = ¥® , and let us assume that ¢'F/g € B(D) , where [¢'F/g](x) = F(x)/x™1 .

Furthermore, on [0,»] , let us assume that

e ——— -




—————

-

(4.51)

a condition on F/g equivalent to (4.15).

}F(n)(x)-[éiJn 2 {x s

<

n+1

ak
C1N

for all x € [0,»] , where C

generally if F™ e B(D) and if F™ e Lip, (D)
(4.51).

However, the function G usually does satisfy all of the requirements

of (4.52), where

(4.53)

G(x)

a

8 =

F(x) - e
F(0)
O

(-1)¥p(khy Mk

1n[H log XJkZN : s
= - og X-

1/2
mdoN)™ " ho0,1,...,m

T

Zakt

k-1
) l:ll._ikl a ], k=1,2,
§%0 - (k=3 )1

|

Then by choosing h =

H

depends only on F, d, m and « .

[md/ (aN) ]

More

, then F may not satisfy

1/2

’

3
3
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4.4 Approximation of the Indefinite Integral on T .

We shall give a general formula for approximating

X
(4.54) I(x) = J F(tlot , X€T ,
a

in Theorem 4.6 below. The special forms of this formula for the cases of
Examples 4.1 to 4.4 are omitted, since these special cases are simply obtained

by direct substitution. The results of this formula are especially suited to

the solution of linear initial value problems and to some linear Volterra integral
equations.. The solutions of these equations may have a singularity or a boundary

layer at one or both end-points of T .

THEOREM 4.6 [24]: Let F€ B(D) , and along I , let

| Ex) | < ¢ o' [0(X)]

(4.55) ' o | S
¢'(x

where C and a' are positive constants. Let 0<g<w/d, and let G€ B(D),

where

P X o186 (x) bF :
(4.56) G(x) = L Rt - — sy L (t)dt
Let

(4.57) a = min(a',B)

Then for h = [rd/(aN)]Y/2




Y

P e
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3586 (x)
e
WBo(x), -5B0(X)
e e

(4.58) l Jx F(t)dt - fﬁ F(t)dt

h? {; [ 2 B fF()d]} S(k,h) 06 (x)
" . é o . t)dt + S(k,h)od(x
=-N !j=-N c,k‘J 6 (ZJ) (e!isﬂ'u, e‘;iBJh)Z r

1/2
< Cl N e-(wdaN)

for all x € T , where % is defined in (2.15), and where C1 depends only
on F,d and a .
In applications the integral I F(t)dt 1is approximated by means of
] N -
formula (4.32), i.e., by h Zk=-N F(z)/¢' (z,)
For example, in applications, the formula (4.58) may be used to approximate

an integral such as Ix t-z/s(log t)(l-t)-5/4dt e I
0




)

4.5 Singular Integrals on T .

In this section we consider the approximation of the integrals

(4.59) (BF) (x) = P.V. f E%%% gt . XET 2
r

(4.60) (W, P J (-t 2921 B Y2 peeyae , xer ,y>0, 8> -1/2 ,
2 15

© (4.61) (7)) = JF x-t|*"* F(t)dt , xer ,8>0;

(4.62) (WF) (x)

J log|x-t| F(t)dt , x€ T
)iy

The results of this section are believed to be new.

Although the last three of these integrals can be evaluated via the method
in Sec. 4.2, by splitting up each integral as an intégral from a to x plus
an integral from x to b , the methods developed in this section are more
efficient, since we derive explicit approximate expressions that are valid for
all x€ I . This increased efficiency is especially important in the solution
of integral equations, where the major difficulty is the evaluation of many
singular inner product integrals.

Although the case of HF 1is done fairly generally, due to its importance,
the procedure for the case of the remaining integrals is illustrated only for
special intervals. We have also left out the case of [FF(t)log[lx-t|2+|y|2] dat ,
since formulas for this case can readily be derived by combining the procedures
for (4.62) and (4.60).

A simple treatment is required for each of the above integrals, in order

to be able to use a suitable formula in Sec. 3, after transformation from D

AT

to Dd . Denoting an arbitrary one of the integrals (4.59) to (4.62) by TF ,




L

B0
we assume that F 1is continuous and bounded on I , and we first set
(4.63) F=LF+E |,

where LF 1is a simple, suitable explicit interpolation of F at the end-points
a and b of T'. Then E is continuous on T , and E(a) = E(b) =0 . We
then construct a simple '‘polynomial'' p , defined on T , such that

p(a) =.p(b) =0, such that P = Tp can be explicitly expressed, and such

that the function G defined by

(4.64) G=E-p

satisfies:

TG exists on I
(4.65) (fG)(x) 0 on x+a or b ,aleng I ,

G 1is analytic in

At this point we can apply a suitable formula from Sec. 3 to 7G , after
transformation from 0 to Dd .
Let us illustrate the above outlined procedure onAexamples of the

approximation of (4.59) - (4.62).

EXAMPLE 4.13: The Hilbert Transform over a Finite T : Let us make the

followiné assumptions:
(1) F € B(D) , where D is bounded, and I is finite. Let a and b
denote the end-points of I ;
(ii) Fe Lipa(D) , where 0 <o <1 and where 7 denotes the closure
of 0.

The function LF referred to in (4.63) takes the form
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(4.66) (LF) (x) = g{; F(a) + 52 F(b)

The function E = F - LF then satisfies ¢'E € B(D) [ 36] , and moreover, for

all z&€ @ ,
(4.67) |E(2)| < C|(z-a)(z-b)|*

where C 1is a constant. In particular, the integrals

E(t)
tb

(4.68) m@ - [ B, mo - |

exist and are finite. Let p and q be polynomials defined by

p(t) = (b—ﬁ)g (t-a) (t-b) (t-5b -3a)
-a
(4.69)

6 z. .1
q(t) = (t-a) (t-b) (t-ya-yb)
(b-a)3 - Sl |

Then, define P and Q by
P(x) = (&p)(x) = p(x)log(i’:—z) + (b-a)p'(x)
+ :lf {(b-x)%-(a-02)p" (%)
* Tls' {(b-x)>-(a-x))p"" ()

(4.70)
Q) = (5 (0 = q(010gCD) + (b-a)q" (x)

+ 11- {(b-x) 2. (a-x) 2}q"(x)

+ 15 (003 (a-x)1q" (x)

The function p, q, P and Q have the following properties:

EE——




(4.71)

Now let us define G by

(4.72)

p(a) = q(a)

-54-

= p() = q(b)
P(a) = Q(b) =1
P(b) =Q(a) =0

The function G has the following properties:

(4.73)

¢'G € B(D) ;
GEe Lipa@ -

satisfies (4.67) in D

(#G) (a) = HG(b) = 0 ;

N(G,0) = sup N(== , D) < =
Xx€T

Upon replacing t by y(u) , we get

(4.74)  P.V. jr S8 g4t - p.v. IR {

0

G(t) = E(t)-p(t)(#E) (a)-q(t)HE(b)

(HG) (x) exists for all x€ T

Now using (3.40) on this last integral yields

G(y(w)) u-¢(x)y’' (u) } - du

p(u)-x

u-¢(x)

Sl diiing
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. 20T
© G(z,) sin“{ ¢(x)-kh]}
IP-V-J%(_t—X)dHZhZ k n" {5 [6(x)-kh]
r k=- ¢'(zk) X-z)

(4.75)

1 N*(G,D) (1e""4/hy
2sinh(rd/h)

A

Collecting the above results and using the (3.49) approximate form of

(3.47), we get the following theorem.

THEOREM 4.7: Let F € B(D) , where D 1is bounded, and let F € Lipa(ﬁ) b
where 0<a<1. Let h= [rd/(aN)]/% . Then for all xe€ T

[p.v. JF 2O ae - [Fb)-F@)] - (2F) (0 Tog )

-P(x) (#E) (a) - Q(x) (ZE) (b)

N N G(z.) _11k-j1]
(4.76) +h _ZN { o 7 (y™ S(k,h) o6 (x)
i Jj;’k ) (ZJ) zk-zj
1/2
< Cl NS/Ze-('rrdaN)

where E = F-LF , LF is defined in Eq. (4.66), G in (4.72), p and q in
(4.69), P and Q in (4.70) and where C1 depends only on F ,d and o .

EXAMPLE 4.14: The Hilbert Transform over [0,»] . Let us make the following

assumptions:
(1) F € B(D) , where D is defined in (4.11);

(ii) FELipa{z:Iargzlsd,OSIzISp},forsome p>0

Let E and G be defined by
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E(t) = F(t)-F(0)/(1+t)

(4.77)

G(t) = E(t)-(#E) (0) t /(1+t)°

The formula analogous to (4.72) then Becomes

e 2T
o © {3 [logx-kh]}
G(t) kh., kh, " 7R
lP.V. JO =< dt + thjlw e Gle™) -7

(4.78)
1 _NA(G,0) [1,¢"d/hy

<
)

for all x € [0,o] and for all h >0 , where

+

e ofd”
o e R
pe ~-x

Thus be choosing h = [1rd/(c:LN)]1/2 , it follows that

lP.V. fo ﬂt% at - £ 10g(1/x)

wm - g (1] S0

X 1
. [EI:;;Z log(1/x) + 1351 (#E) (0)

LT e k-j
(4.8)  ,p ¥ { 7 elhgeedhy (1oL ]}-s(k,h)olog x Il
k=-N j--N e 'eJ
T
< ¢, N/ 2" (o) e

for all x € [0,»] , where C1 depends only on F, d and a .
We remark that in applications, the integrals (#E)(a) and (ZE)(b) in
(4.68) are evaluated by means of formula (4.32) and the integral

(HE)(0) = f” [E(t)/t]dt in (4.80) is evaluated by means of formula (4.36).
0
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We remark also that (4.76) and (4.80) provide a convenient expression for
solving Hilbert-type problems (see e.g. [11]) and integral equations with

Cauchy-type singularities over closed contours.

EXAMPLE 4.15: | The Integral UB YF for ' = [0,1] . In this case we want
]

to approximate
(4.81) (Ug O (0 = jo [(x-t)2+y?1 8% £(t)at

where £€ B(D) , D as in (4.7), and where F € Lip (@) , with 0<a<1.

; w @0 .
Using the notation F(a,b;c;x) = Zk=0 ———— x for the hypergeometric
(c), k!
k

function, it may be shown that if n 1is a nonnegative integer, then

1
W (X,y) I [ (x-1)2ey?] B ar
0

(4.82) L (lay?) B g (g, 1,053, X

2
(1-X)n'1[(1-X)2+y2]'e';’r‘(6+*s,1;'—‘§§;ﬁ%+—g )
-X y

+

Let us define Lf, E and G by

(Zf) (x) = (1-x)£(0) + x£(1)
(4.83) E=F-LF
G(x) = E(x) - x(1-x){(ax+b) (UB,yf) (0) + (cx+d) (UB,yf) 1}

where
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1

a = (3w2-2w2-2w3—w1) , C= -a
(4.84) b = (wg-2wyew)(wyw)la , d = - (wy-ig) (0 wy) Lo
w, o= wh(O’Y)

By taking h = [1rd/(oLN)]l/2 , we thus find by proceeding on for (3.51), that

1
| jor(x-t)zwzl‘e"’fft)dt - Wy (X, ) £(0)

- Wy (6,Y) [£(1)-£(0) ]

[wy (x,y)-w3(x,y) 1 [a(Ug JE)(0)+c(Uy JE)(1)]

(4' 85) e [wl (X,Y) 'wz (X,}’)] [b(UB,)’E) (0)+d(UB’yE) (1)]
2.2
N ‘N G(z,) ((2,-2;)"+y -B-%
crd | | e e
k=-N 'j=-N ¢'(zj) (kh-jh) “+¢(y)

; /2 i -
-S(k,h)w(x)’ <¢ N3/2e (rdaN)
for all x € [0,1] , where ¢(x) = log[x/(1-x)] , T, is defined in (2.29) ,
z) in (4.8) and where C1 depends only on f, d and a . In applications
(UB YE) (0) and (UB yE) (1) are evaluated by means of formula (4.32). It

may also be convenient to approximate w n(x,y) by [Lwn(-,y)](x)

+ ng-N {w, (zy»y) - [Zw_ (+,¥) ] (2, ) }S(k,h) °1log 1’_‘—’( , where z; =l tanh(kh/2)
and where [Zw_(*,y)](x) = (1-x)wp, (0,y)+xw (1,y) .
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EXAMPLE 4.16: The Integral (VBf) for ' = [0,1] . Let f satisfy the

condition of the previous example. We want to approximate

: 8-1
(4.86) (Vef)(x) = Jo |x-t|" “f(t)dt , 8 >0

As above,

(Zf) (x) = (1-x)£(0)+x£(1)
(4.87) E=f-Lf
G(x) = E(x) - X(l-X)[(a+bX)(VBE)(0)+(c+dX)(VBE)(1)]

. - (B+1)(8+2) (B+3)
8-1

a » (8:2)(6+3) 2

(4.88) :
2
= 22(8+2) « (B+1) B+2
s - i o
Then, by setting
1 n B-1
I (x) = I t|t-x|" “dt
0

(4.89)

n -k k
s wiB x3+n ¥ (1-x)6 Z (2) . (1-x)
(B+1), k=0 B+k

for n=0,1,2,3, and taking h = [1rd/(cxN)]l/2 , we have
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1
| f |x-t] 8 Ee)dt - [1,00£(0)+(1; ()T, () }E(D)]

+

L a1
[a{IS(x)-IZ(x)}+b{Iz(x)-Il(x)}] '[0 t” “E(t)dt

+

1
({15001, (0 }+(1, (9 -1, ()] JO a-0% lEa

1
e o Y a

(4.90) hr(e)cos(ﬂéﬁ) N {hB-lTrl-B G(z

o k=-N

+

G(z ) , 5 2y B-1

J=-N ¢! (z )
J#

f t'Bcos[(k-j)t]dt}S(k,h)ocb(x))

1/2
<q N3/2, - (ndaN)

for all x € [0,1] , where Zj and ¢(x) are defined in (4.8), and where

C1 . is a constant depending only on F, d, ¢« and B8 .

EXAMPLE 4.17: The Integral VBf for ' =-[0,o] . Let f satisfy the

condition in Ex.4.14. We shall approximate the integral

(4.91) r Ix-t|8le(t)at , o<pg<1.
0

To this end, we set
o) = £9
(4.92) E=f - Lf

G(x) = E(x)-a -(;:’:? (V4E) (0)

I




——"
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where

(4.93) a = Sin(ve)

Then, setting

109 = [ |x-t/81 £E
xB X T R-1
= F(1,B8;1+8;—) + (1+x)
" B(1+x) 1+x sin(mg)
(499 1 ) = [ [x-¢[8°1 _tdt
1 [o_ (1+t)°
B+1
1 X ol ks b BIReE)
= F(2,8;2+8; )+
B(B+1) (1+x)° (1+x)°  sin(m) (1+x)**E
and taking h = [1d/(a'N)Y?] where a' = min(a,8) , we have
l f Ix-t|® 1Ece)de - £(0) Ty (x)-a(V,E) ()1, ()
0 |
hP(B)COS(EB) N 1-8 .
s adaint L0 {Ll{b%__ oFhg oKy
(4.95) k=-N :
" RERPSRE NG YR o € R hen
+ j-Z-N eJhG(eJh)'e—j—_-ﬁ——‘ Jo t Bcos[(k-j)t]dt} .
j*k ‘

e /2
*S(k,h)slog x ‘ sc Wi (mdo! NY*

for all x € [0,»] , where C1 depends only on f, 8, d and o' .
In applications (VBE) (0) 1is evaluated by means of formula (4.36). It
may also be convenient to approximate the terms in Ib(x) and Il(x) involving

hypergeometric functions b); (4.26). The 2N integrals

i s i P S
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20
using (4.32).

EXAMPLE 4.18: The Integral (WwF) for T = [0,1] .

T 1
I t Beos(kt)dt = 1B J t ™8 cos(rkt)dt , k=1,2,...
0

condition in Ex. 4.15. We want to approximate
1

(4.96) (WF) (x) = fo log|x-t|F(t)dt

We again set

2N may be evaluated

Let F satisfy the

(LF) (x) = (1-x)F(0)+xF(1)
(4.97) E=F-LF
G(x) = E(x)-(1-x)[(a+bx) (WE) (0)+(c+dx)WE(1)]

where

a=-24 c =24
Ky 42 78

b = ..3_ d = -?
Setting

1 n
I(x) = Iologlx-th: dt

(4.99) -y {)3“'1103 x + (1-9™1 10g(1-x)

_th xk
k=0 n+I-k

for n=0,1,2,3, and taking h = [rd/(aN)]1/2

, we have

A R Y Ry R < Nr m




L

1
, JO log]x-tlF(t)dt-[Io(x)f(0)+{11(x)-10(x)}f(l)]
A 1
+ [a{IS(x)-IZ(x)}*b{Iz(x)-Il(x)}] JO E(t)log t dt

il
+ [e{1500-1, (0 {1, (0 -1, () 1] [0 E(t)log(1-t)dt

(4.100)
AN G(z,)
s { k Jou 1
=-N ¢'(Zk) ¢'(Zk)
N G(z) | %k %5 1 (" 1-cos[(k-j)t] !
+ ¥ _J__[:logl-_.l "EJ =) dtl}s(k,h)o¢(x)|
=-N ¢'(Z.) kh’Jh 0
%k J
15/2
<q N3/2e-(ﬂdaN)

where ¢(x) = log[x/(1-x)] , and where C1 depends only on f,d and o .

1 1
In applications, the integrals J E(t)log t dt , I E(t)log(1l-t)dt and
0 0

fﬂ 1-cos kt

: dt (k=1,2,...,2N) are evaluated using (4.32).
0

EXAMPLE 4.19: The Integral WF_for I = [0,] . In this case we shall give an

approximate expression for the integral

(4.101) (WF) (x) = IO log|x-t|F(t)dt

where F satisfies the conditions in Ex. 414. We assume also that (WF)(X)

exists for all x € [0,) . Proceeding as in the previous examples, we set

Py

l . o AR Lo Bar i v
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. LE@
R = —EO
(1+t)
Er = BN TE

6x) = E() - —X— (a+ )

(1+x) 1+x

(4.102)
a = % { [41og t + 6]E(t)dt
0

b = % J [18-1og t]E(t)dt
0

Let us also set

S log|x-t| S -
L.(x) = dt =
0 IO (1+t)2 I+x

J tlog]x-t dt
0 (1+t

2
kx 1 1
(4.103) (1+x)2 108 X + %40k 1 (1+x) (2+x) ’

log x

LX)

]
See———y
ct
=
[(e]
»
]

I,(x)

1 4x+6 1 1 (x+2)“-4
+ -k Y-
8 @izl TX 8 (T

r———————— v

Yo

S s
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: 1/2
Then, by taking h = [md/(aN)] , Wwe get

‘ J log[x-tlF(t)dt-IO(x)F(O)
0

- aIl(x) -bI2 x)

N
-hJ {kh eMig(ekh)
k=N

(4.108) :
N 5h.. jh Iekh-eJh
o e Gl S
oo
ok

m™ 5
v Jo 1'C°5£(k‘J)tJ dt:l} S(k,h)olog x

1/2
< Cl N3/2e- (wdaN)

for all x € [0,~] , where C1 depends only on F, d and a .

S N RS WSS S |

SIS ST DN ——
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S.  APPROXIMATION OF TRANSFORMS ON T .

The approximation of Fourier transforms over (-»,») was discussed in
Sec. 3, where the trapezoidal rule yields the FFT method. In this section
we briefly describe methods for approximating the semi-infinite Fourier, the

Laplace, the Mellin and the Hankel transforms, namely

(5.1) P(F,A) = J Fet)etat
0
(5.2) L(F,\) = r F(t)e *tat
0
(5.3 M(E,\) = r Fee)er Lat
0
and
(5.4) 8 (F,)) == J‘;Fct)Jv(xt)dt |

respectively [24].
The integral F(F,A\) may arise as a sine or cosine transform, in the

process of approximating I F(t)elxt dt , when F has one or more integrable
R

singularities on R . More generally, in the approximation of any of the above
integrals, if F has a finite number of isolated singularities on the interval
of integration, then we recommend splitting up each integral into a finite
number of integrals, in such a way that singularities occur only at the end-
points of each interval. Over any such finite interval (a,b) , we recommend

using the formula

aha

S
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) b b ? ekh G(a+bekh
(5.5 J G(t)dt = (b-a)h )
A kN (1+e )%  1eeiD

while over (0,») we recommend using one of the formulas (4.36) or (4.38).
Usually (4.36) works well for (5.2) and (5.3), while (4.38) works well for
(5.1) and (5.4).

An additional difficulty occurs for the application of (4.38) to the
approximation of (5.1) and (5.4), where the integrand decreases slowly.

Consider for example, the approximation of

" 1/2 sin At dt
(5.6) F(F,A) = J: T
by a trunctation of
- 1/2
1 “x .
(5.7) S(F,A) =h | sin(\z,)
i - 1+z‘1/2 h
1+e k

where = log[e +/ ?ﬁ;] This series sum (5.7) is quite accurate

if h <min (1, n/X) . For large positive k , 2y ~ kh+log 2 ; hence if
A>1 and h < w/A at least one of the points 2 falls between every
consecutive pair of zeros of sin At , and S(F,\) 1is then a very accurate
approximation of K(F,A) . We then recommend splitting the series S(F,))

into two parts

© N ©
W3 =pi) vk
- k=~ k=N+1

The integer N is chosen so that z,/%/(1+z,) < 1/2 (say) if k>N ,

and so that the series Z:__m includes all and only the terms for which

e -
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2 < uem/X , where u, is a positive integer. Direct summation and

truncation of the infinite series h Z:s_m produces no difficulty, since

this tail of the series h Z:=-co converges very rapidly. The series Z;=N+1

is summed by evaluating the first few

1 » 1/2
t =h / ——=— k sin(Az,)
H i Gl 1+e _—1+zk

U2 U

and then applying Euler's method of summation to approximate the alternating

series Zu>u £,
(-]

The zeros of Jv(xt) are asymptotically equi-spaced for large t and

the above described procedure may be similarly applied to the approximation of

HQ(F,A) .

The approximation of each of the four integrals (5.1)-(5.4) by the above
outlined procedure is described in detail in [24], where many examples are
considered, illustrating the accuracy and superiority of these methods over
other methods. It is furthermore shown in [24] that_these methods may te
used effectively for A up to 100. If A > 100 , we recommend asymptotic
method (3,31,41,42,59].




6.  APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS VIA THE SINC-GALERKIN METHOD.

In this section we shall illustrate the application of the cardinal function
approximations to the solution of second order boundary value problems [53].

We defer the solution of initial value problems to Sec. 7, where we illustrate
their solution as a special case of the solution of Volterra integral equations.
The method of approximate solution of ordinary and partial differential

equation boundary value problems which we present here is carried out by the
Galerkin scheme [44]. It is perhaps best illustrated by considering the solution

of the simple second order linear boundary value problem
(6.1) (Zf) (x) = £'(x)*+ u(X)£' (X)+v(x)f(x)-1(x)=0, x €T
(6.2) f(a) = £(b)=0 .

Other illustrations of solutions of ordinary and partial differential equation
boundary value problems are given in examples at the end of this section.
Throughout this section we shall consider only the solution of second order
boundary value problems.

Let A(u) denote a diagonal matrix with diagonal elements (u-N’u-N+1’°°'uN) &

where u = u(zk) , let 1 denote the vector (1,1,...,1)T , and let

I(l) and I(Z) denote the matrices
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1 1
0 Al 5 "z N
1
1 0 =l % s
(1) _ (1) 2
G e gty .
B AReE e :
L 2N 2N-1 2N-2
S e g g
2 ge e ()2
2 AR
=B e 2
g E R =
6.9 19 sy -
i 2 b e
L @¢ @-nf @-% @-)°

Let us now make some assumptions on Lf in (6.1).

of Definition 4.1, let u,v and o be analytic in 0 , such that (6.1)-(6.2)

has a unique* solution f for which

Using the notation

(6.5) £76' , £/’ , f/6' and o/e' € BO) .

and such that f satisfies (4.15) on T .

We approximate f on I by

N
(6.6) £(x) = £fy(x) = kzN fk S(k,h)°¢(x)

*The assumption of uniqueness may be bypassed via the use of the

generalized inverse.

2
T
B
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The Galerkin scheme enables us to determine fk > f(zk) by solving the linear

system of equations
(6.7) (LfN,S(k,h)o¢) =0, k=-N,-n+1,...,N ,

where the inner product in (6.7) is (nearly always) defined (for second order

problems) by

u(x)(v(x)) dx

(6.8) ; (u,v) = JF P
'(x

THEOREM 6.1: Let the above assumptions be satisfied. There exist constants

C1 C6 - dependlng onlyon f,d and « , such that if h = [nd/(aN)]l/2
then
: 1/2
o) o £ 1/2 - (mdoN)
(6.9) JP o S(k,h) o (x)dx-h _7 SN
h vy £(z, ) 1/2
v (X)£(x ¢ _hov £z -1/2,- (ndoN)
(6.10) IF LL_l(b = S(k,h) o (x)dx T l <C, N
' h u £'(z,) . 4 1/2
: u(x)f' (x) " : k k < N 1/2 (mdoN)
(6.11) Ir —u-cp'(x) S(k,h) o6 (x)dx _r s
1/2
(6.12) I HOOE' (X) g h)op(x)dx- K Z £z, )6(1” T
T8 o) 3=-N o
' h £'(z,) 3 . 1/2
(6.13) I £ 5(k,h) o6 (x)dx- ﬂzk— } S et Bl
r o' (0 o
; ') : % .o, 5(2)}
(6.14) l fr o S(k,h) o6 (x)dx- hJ'Z-N £(z, ){;;z sGv § 655 l

1/2
$c, N1/2e-(1rdaN)

RP——
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Let fn = (f-N’f-N+1""’fN)T be the solution of the system

(6.15) 1(2) A(-'—*lz‘i-)x(lhhA( IE hA(——)l

which is obtained from (6.7). Then the function fN defined in (6.6) then satisfies

1/2
(6.16) |£00)-£y(x)|  €; N/ 27 (TdaN)

for all x € I' , where C1 depends only on f, d and a .

We remark that the approximations (6.9), (6.10), (6.11), and (6.13) may
be obtained by applying the formula (4.31) to the respective integrals. The
approximations (6.12) and (6.14) may be obtained by replacing f by fN and
then applying (4.31). A different family of approximations is also possible,
such as that obtained in [53]. For example, the above formulas yield the

approximation
I - jrf(x) (o5 SGL s (0ISK,h) o6 (x)dx
J i

> £(x) Z ¢ 5(1)

On the other hand, if e.g. f is bounded on I' we find, after integration
by parts, and then applying the above approximations, that

i d 5
e - [0 6SGme00] F (FwSh) 000 1en

=7 c. { A ¢ (x; )5(0) + £(x, )5(1)}
7,

J :
Both approximations have the same order of accuracy. The approximations of

Theorem 6.1 are usually simpler in form than those we obtain after integration

by parts.

s
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We also remark that the explicit expressions (6.9) - (6.14) make
"collocation' and ''Galerkin'' synonymous for this method.

The matrix 1'%

is the dominant matrix of the system (6.15). It is a
symmetric, negative definite matrix, with eigenvalues -Ak,k=-N,-N+1,...,N -
where Trz/(N+1)2 < Ak < "2 . Thus I(Z) is a well-conditioned matrix, with
condition number less than (N+1)2 . The matrix I(l) is a skew-symmetric
matrix with determinant zero. It has eigenvalues iwk , where -m< Wy <
Contrary to the case of finite difference or finite element methods which lead
to sparse matrices, the matrix in (6.15) is a full matrix. However, the rate
of convergence (6.16) of the above method is considerably faster than that of
finite difference or finite element methods, which converge at the rate O(n'q)
for a system of order n , where for one-dimensional problems, q is usually 1
or 2. Moreover, under the above assumptions, the. O(efcn%) rate of convergence
cannot be improved (see Sec. 9), regardless of the basis. Due to its rapid
convergence, the present method yields a desired accuracy with a relatively small
system of equations.

The reduction in the amount of work required is éonsiderably greater in
two and more dimensions. In application, the coefficients of differential equations
in p dimensions are piecewise analytic functions in each variable. Singular-
ities of the solutions occur wherever the coefficients of the equations have
singularities but this occurs only on p-1 dimensional surfaces. Thus (with
the exception of inverse problems, where determination of the boundaries is more
difficult) we can determine a priori the points, or surfaces where the singular-
ities occur, and using a system of order n , we can achieve as approximation
having an O(exp[-cnl/(ZP)]) error. This should be compared with methods 3
based on finite differences, or on polynomial, or finite element-type approxi-

mations, for which the error is O(n'c/p) in p dimensions.
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We do not have a precise idea at this time, by how much fasfer we can
solve partial differential equations by the above method than by finite
difference or finite element methods. The solutions of two-dimensional 'model'
problems in the examples which follow seem to indicate that we can get by with
less than 1/3 of the work required of classical methods to achieve 3 places of
accuracy, and less than 1/10 of the work it takes for 5 places. Preliminary
calculations indicate the reduction in the amount of work required to solve
3 and higher dimensional problems is considerably greater, e.g. by a factor of
100 in 3 dimensions.

The above method also easily reduces a nonlinear equation to an algebraic

system. For example, for the case of the problem

L(f) = £'(x) + G(x,£(x),f'(x)) = 0

(6.17)
f(a) = f(b) =0 ,

if G(-,f,f')/¢' € B(D) , then we can make the approximation

f G(x,f(x),f'(x) S(k,h)ed (x)dx
r o' (x)

hG(zy,£(z),£" (7)) :
¢' (zk)2

(6.18)
e-wd/h

0( )

in which we replace f(zk) by fk , and f'(zk) by a linear combination of
the fk which is given by combining (6.11) and (6.12). The approximate
solution of (6.7) then involves the solution of a system of nonlinear algebraic
equations for the £, , which is usually not an easy ﬁrobiem to carry out.
Mixed conditions at an end-point require a modification of the form of

fN in (6.6). Consider, for example, changing the conditions (6.2) to

AT W, 3
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(6.2)" f(a) =a , Bf(b) + ¥f'(b) =6 ,

where IBIZ + |Y|2 >0 . In this case (6.6) is replaced by the approximation

(see Sec. 4.)
. beXx 2
f(x) = fN(x) ® g + A(x-a) + B(x-b)
(6.6)' N
+ ZN ¢ (x-0)S(k,h) 0o (x)

Clearly, fN satisfies (6.2)' at x=a , since the sum 22=-N ck(x-b)S(k,h)°¢(x)
is zero at x=a and at x=b . Also, f& exists on all of I , except at -
x=a . In particular, the derivative of 22=-N ck(x-b)S(k,h)°¢(x) is zero at
x=b . Hence substituting fN for f in the second equation in (6.2)'

enables us to eliminate B in (6.6)', to get

' b-x ., ya+(b-a)$ N

f (X) = + (x a) + Aw()()

3 73" 5 (b-a) 2y (b-2)
(6.6)"

N
5 ZV ¢y (x-b)S(k;,h) 26 (x)

where
(6.6)"' w(x) = (x-a)[1 {B(b-a)+yv}(x-a) ]

B(b-a) “+2y(b-a)

The expression (6.6)" for fN involves 2N+2 unknowns: CNCoNe1? oSy and
A . We can thus carry out the approximate solution of (6.1)-(6.2)' by solving

the system of 2N+2 equations
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[ e xebstemesy —&
T ' (x)

= h(LfN)(zk)/qu]'(Z =0, k=-N,-N+1,...,N
6.7)"
RESICECRES
F o ' (x)

N (Zf)) (z)w(zy)
T N 12< E o
k=-N O

It is tempting to deal with (6.2)' more simply by means of the approximation ‘

N
b-x X-a
(6.17) fN(X) = ey + L yry +k=z.1\] CkS(k,h) °¢ (x)
where u and the ¢ are unknown. Then, since the 2y "bunch up'' near a

and b, it is tempting to use the approximation

(6.18) f'(b) = B‘% . b—?‘N_

and to take care of the second condition in (6.2)' via this approximation.

However, this does not work. While (6.17) may be used as an accurate approximation

of £ on T , the ¢ are close to zero for k 1large and positive (and also
for k large and negative). Hence although the error 'f(zN)'fN(zN)| is
small,

By ®)-fyCey) |

(6.19) 1£' (2 -
N b2y

may be very large (see Sec. 8.2).
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The coefficients in (6.9)-(6.14), for various contour [ corresponding
to the mappings in Ex. 4.1-4.5 and the identity map of Sec. 3 are given in
Table 6.1. The entries are given both as functions of x , into which we may

substitute X=2, and also as functions of w , into which we may substitute

w=kh .
TABLE 6.1. THE COEFFICIENTS. IN EQS. (6-9)-(6.13)
iy ¢ 1 ¢u
;'.7 ;,7
(a) o 10.3]) log — xz(l-x)za' eZw 2
: 1-x (1+ew)
= y(w) = X+ tanhkw
2w
1+x Z 4e
(b) [-1,1] log 7= R (1-x" )= 1
1-x (1+ew)4
= y(w) = tanhw
(c) [0,%] log x *2 - e2w -1
- yw) = e"
2 eZw -sechzx
(d) [O’m] 1Qg Sinh X tanh x -—7‘7\,—
v, T - -
= y(w) = log[e"+ 1+e™"] 1;27,7
(e) ['°°’°°] X i 0
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Let us illustrate the above method on the approximate solution of some
"model" boundary value problems. The computations of these problems were carried

out by Burke [6].

EXAMPLE 6.1:

(6.20) e2ff41 =0 ,0<x<1; £(0) = £(1) = 0

This problem has the solution

o (l-x)/s+e-x/e

6.21 f(x) = 1-
(6.21) (x) e e

The system (6.15) for this equation becomes

(6.22) 2125 acda-0hg = L acta-ndy
€ >

Solving this system of equations yields the approximation

N
X
(6.23) fN(x) = _Z ka(k,h)o log (-l_—x %
k=-N
Taking h = .7S/N1/ 2 , N=16 , we get a solution which is accurate to 5 places
if e=1/5 and 3 places if €=1/10 . Similar accuracy could have been obtained

if instead of solving (6.20) we had solved

(6.20)" epfextl-xy =0, £0) = £Q1) = 0 .
EXAMPLE 6.2:
(6.24) £'e £-£9/x% , 0< x< @ ; £(0) = £(=) = 0

This problem is the radially symmetric form of the three dimensional nonlinear

R
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Klein-Gordon equation. Its solutions f satisfy ¢'f € B(D) , where D is
the region defined in (4.13) and where ¢(x) = log sinh x . Moreover, f is
bounded on [0,»] , f(x) =O0(x) as x>0, f(x) =0( ) as x> . Hence
we may expect the approximation

N
(6.25) fy(x) = ] £ S(k,h)e(log sinh x)

to be accurate. Substituting (6.25) into the differential equations and using

(6.10), (6.13), (6.14) and the entries (d) of Table 6.1 we get the nonlinear

system of equations

2w
1 -(2) 1 @8] e
I +A I -hA £
(6.26)
2w
- RACE)AC 1 )£
1+ {log[ew+/(l+e2"5]} 5

where > = (£5 £, ..., £ ) . Taking h= 752 | N-l6 and solving

this system by Newton's method we are able to get the approximation of the
unique positive solution of the problem (6.24) which is accurate to S dec. on

(0,=] . The problem (6.24) has other solutions, ahd'the system (6.26)

1as other solutions which approximatee these.

*u_*-1, (xy) €s=(0,1)x(0,1)

- e TS/ . Substituting the approximation
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N N

(6.29) ug(,y) = i=Z_N J_=Z_N u;5S(1,0) 00 (X)S(3,h) o6 ()

into (6.27), multiplying by [¢'(X)]_ls(k,h)°¢(X)[¢'(Y)]_15(2,h)°¢(y) , integrating
over S and using (6.9) and (6.13) yields the system

(6.30) BU + UBL = W

where

B=12 .

U= [ug] , 1,5=N,-Nel,.. 0 N
2w
(6.31) W= -hZA(—® JE A(—S )
(1+e2w)4' (l+ezw§1
with E = [e;s] = [1] , i,j=-N,-N+1,... N .
Setting*
. -1 AN
(6.32) B=T7AT , A= AN+l
'.XN
we get
(6.33) AY + YA = W' 1
where 5 1
Y = [y..] = TUT"] |
ij |
(6.34) o3

W= [wi] = TWT

*From the symmetry of the problem, UBT = BU and we could therefore have
solved (6.30) more directly, via the formula U = ¥B MW . However the above
procedure is more general.

g
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The solution of (6.33) is

- (6.35) Y

Xi+kj
which yields
(6. 36) u=TlyaHT

Substituting this result into (6.29) we get an approximate solution Uy which is
accurate to 5 dec. on S . Similar accuracy obtains if the -1 'in (6.27) is

replaced by [x(l-x)y(l-y)]_1 %

EXAMPLE 6.4:
(6.37) U = U 5 (X, € (0,1)x(0,)
(6.38) u(x,0") = sin(mx) .

The exact solution of this problem is
-nzt
(6.39) u(x,t) = e sin mX

The Galerkin approximation

4t

uy(x,t) = e " "sinmx
(6.40) 5o
+ I I uy5S(E,h)00(x)S(,h*) 09* (t)
i=-N j=-N 1J

satisfies the boundary conditions (6.38), where * ¢(x)=log[x/(1-x)], ¢*(t)=log t .

*Due to the O(e'at) rate of decrease of u(x,t) as a function of t as
t + » , we could have achieved greater accuracy by taking ¢*(t) = log sinh t ,
as in Ex. 6.2.
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Substituting (6.40) into (6.37), we arrive at the system of equations
(6.41) BU+UC =YV

where B and U are the same as in (6.30),

2
= - h: I(l)A(ew*)

c_.
(6.42)
g o2 g 2wt
V=h"h A(————;rza[e sin(nzk)]A(e ey
(1+e”) :
in which w 1is evaluated at kh, w* at h* , L zgh* . %+ tanh(jh/2) ,

and where h = .75NY/2 , n* = .5/N/2 | and N=16 . The equation (6.41) is
solved for U be diagonalization of B and C , and then proceeding similarly

as in Ex. 6.3. The resulting approximate solution is accurate to 4 dec. on S .

O s 4




x5 APPROXIMATE SOLUTION OF INTEGRAL EQUATIONS.

The solution of linear integral equations, like the solution of linear
differential equations, is analytic in each variable whérever the coefficients
of the equation are analytic. Thus we can determine a priori, the regions on
which the solution of a problem is analytic. This is usually the case for most
nonlinear integral equations arising inlapplicationS} It is often more
difficult to determine the exact nature of a singularity and it is in these
instances that the methods of Sec. 3 and 4 are particularly powerful. In
this section we illustrate the application of some of the approximations of
Sec. 3 and 4 on the solution of Volterra and Fredholm,integral equations.

Basic to the method of approximation is the Galerkin scheme (see [18]
for a summary of this scheme for the solution of Fredholm integral equations;
the case for more general linear and nonlinear equations is discussed in [44]).
For our purposes, the function S(k,h)e¢(x) play the most important role in
this scheme, and for the mcst important kernels arising in applications the
explicit approximations of Secs. 3 and 4 enable us frequently to replace an
integral equation by a system of algebraic equations without performing any
numerical integration. Such procedures have been effectively carried out on
the numerical solution of one and two-dimensional singular integral equations
in [ 32, 36].

Let us consider the case of a one-dimensional problem, such as
(7.1) f(x) = xf)(x)+g(x) , x €T

where kf takes on one of the forms

X
(7.2) (kf) (x) = J K(x,t)£(t)dt
a
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or

(7.3) (%f) (x) = J K(x,t)f(t)dt
r
We assume that 0 is a bounded domain, that g is analytic in 0 , that
g€ Lipa(D) » 0 <a <1, and that for any such g , (Xg) has the same properties
as g . We may then expect (7.1) to have a solution f with these properties.

Assuming this to be the case, we approximate f and g on I by

( Nfl (x)
f(x) = £f.(x) = Y
N N
(7.4)
( Nfl (
g(x) = g,(x) = ¥y, (X)
N by
where
V100 < g5
(7.5) wk(x) = S(k,h)o¢(x) , k=-N,-N+1,...,N
a1 =g
We then set
(7'6) Uj (X) = (KIPJ)(X) ’ j='N'19'N""!N+1

and we approximate ”j on T by (7.4), namely

N+1
(7.7) UJ- (x) o UjN(x) il k=-§l-1 eJk Wk(x) :

Upon substituting these approximations into (7.1), we arrive at the system of

equations

AP wasien oA
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N+1
Ck-j=-zN-1 &3Sy = d » k=-N-1,-N,...,N+1

(7.8)

for determining the -

The most difficult part of the procedure is the accurate approximation of
uj(x) in Eq. (7.6). To this end, the approximations in Secs. 3 and 4 are
frequently helpful,especially for the case of important singulér'integral equa-
tions arising in applications. Assuming that by taking K h = [ﬂd/(aN)]l/Z we
can approximate g in (7.4) and uj in (7.6) to within an error of
O(Nl/zexp[-(wdaN)l/z]) , the resuiting approximation of f by fN is accurate

3/2

to within an error of O(N exp[-(wduN)l/z]) :

Let us illustrate the solution of some integral equations via examples.

EXAMPLE 7.1: A Volterra Integral Equation. Let us consider the approximate

solution of the Volterra integral equationi

(7.9) f(x) = J:[k(t)f(t)*'g(t)]dt +r(x) , x€ [0,1] ,

by use of the formula (4.58). Let D be defined by (4.9), and let k,g and
r € B(D) . We assume furthermore that r € Lip [0,1] , « >0 , and that (7.9)
has a solution f € B(D) N Lipa[O,I] . The method we shall describe for ob-

taining an approximate solution of f in (7.9) may also be applied to get an

approximate solution of the initial value problem

(7.10) ;”% = Ay + b , x€ (0,1) , y(0) = y,

in which P , Y and Yo are vectors and A is a matrix.
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Let us approximate f and T on [0,1] by

N+1

Yaie by ()

f(x)
jai-1 I

R
I

£,

N+1

ryx) = j‘}% L %™

R

T(x)

g1 = 1x, ey, (X)) = x

{7.11) %
lDJ (X) ¥ S(J sh)°l°g 1-x° j='V9'N+1’--°’N

p_N-l = I’(O) ’ pN+l = r(l)
p; = -(1-zj)o_N 1745 * r(z )
z, = %+k tanh (jh/2)

Substituting these expressions into (7.9), using (4.58) and making the

]
approximation J g(x)dx = h Z?=_N zj(l-zj)g(zj) , we get the system of
0

equations
€-N-1 7 PN-1

= hJ}E zj(l-zj)[kj{cj+(1-zj)C_N_1+zch+1}+gj]°

(7.12)

*1%- -j h Z °k-z * Pk

hJ);V zj(l-zj)[?j{cj+(1-zj)c_N_1+zch+l}+gj]+pN+1

Taking h = [1rd/(c:N)]1/2 and solving this system for the C we get the

approximation fN in (7.11), which differs from f by less than ClN

2,- - (rda) /2




-87-

where C1 depends only on k,g,r and o .

EXAMPLE 7.2:

Consider the solution of the problem

(7.13) £(x) = Iw K(x-t)£(t)dt+g(x) , x>0 ,

0
where k€ L'®)NL’®) and f lg(t)|% dt < w Jo lg(t)|dt < = . Let us
0

assume that the transforms

(7.14) K(x) = LR e (t)at , 6,(x) = JO X (t)dt

can be explicitly expressed. Let K(x) #1 , and let J d log[l-k(x)] = 0 .
R

Then the problem (7.13) has a unique solution f on (0,») . For given F ,

let PF be defined as in (3.37). Then the Fourier transform F,_ of the

+

solution to (7.13) may be expressed via the formula

(7.15) F_ = exp[P0][G,+P{G, [exp{(1-P)9}-1]}]

where ¢ = -log[l-X] . The formula (3.48) may now be used‘to approximate
Pd , (1-P)¢ , and P of the remaining function in (7.15). Using (3.17), £(t)
may therefore be approximated by a truncated Fourier series on '(0, m/h) . The
details are carried out in [46,47]. The convergence of this approximation

procedure is proved in [43,46].

EXAMPLE 7.3:
The approximations of this paper were effectively used in [36] for ob-

taining approximate solutions of integral equations of the form
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(7.16) £(P) = x” ERQ £(Qd4y + G(P) P E S,
S 'P'Ql ‘
where S 1is a surface in iR; , forming the boundary of a bounded region V .

For example, the solution of the Neumann problem over a volume V with surface 1

S

(7.17) m=0 in V,38 <6 on S
can be represented as a single layer potential i
(7.18) u(P)=” —E@—dAQ,pev. 1

s |P-Q|

The unknown density function up then satisfies the integral equation 4

u® + 4 || s (rqpr@ay
S

(7.19)

= 8(P)
74 B L ' 1
This equation has eigenvalue 1, and from the Fredholm alternative, we must have

JJ g(Q)dAQ = 0 , in order for a solution to exist.

S
In problems of the type (7.16) or (7.19) arising in applications S is

a Liapunov surface, and we generally expect to be able to subdivide S into a

relatively small number of patches, S = Utgl S2 , So that:

(i) FOT eacly 9%1,2,:..;L SL can be parametrized over S = [-1,1]x[-1,1] ,

call the parametrization map

(7.20) T, i 5+8,
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Let T2 take the form

(7.21) T, = cPan . P L P e

where (x,y) € S . We assume moreover that for each fixed y(rsp.x) € [-1,1] ,

each téj)(-,y)(rsp.téj)(x,O)) = B(D)fﬁLipa[-l,l] , where o > 0 and where
D 1is defined as in (4.9);

(ii) If Phe Sz , then G(TQ) , satisfies the above conditions that
Téj) satisfies.

These assumptions enable us to reduce the equation (7.16) over S to a
system of integral equations over S . The approximation procedure which is
then applied is most simply described by considering the case L =1 . In

this case the resulting equation over S takes the form

1 ¢ F(x,y;&qn)
(7.22) n(x,y) + j [ u(E,n) = Glx,y)
171 x-g)oe (y-m)

where F(-,y;&,n) and G(-,y) (rsp. F(x,*;&,n) and G(x,+)) belong to
B(D)F\Lipa[-l,l] as functions of x (rsp. y) with the remaining variables
fixed in [-1,1] .

If f 1is as arbitrary continuous function defined on [-1,1] , let us
set

N
(7.23) E@) = T EGISEe80)

where the 2 and ¢ are defined in (4.10). We then approximate u (and
similarly, G) on S by

e

FPC RO -1 R
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N+1
(7.24) u(x,y) = uy(x,y) = j,k}_ L Mk V)
where
i (Xy) = S(G,h)ed(x) S(k,h)o(y) ,
j,k = -N,-N+1,...,N

Voneg kG0 = G950 ()

U k9D = (ES(K,h) o0 (y)

wj,-N-i(x’Y) = ED5G.h)eo ()
(7.25)

b5 ne1 0 = GPDSG LMo ()

boyer, 100 = BHED

Vo1 e C0) = G ED

‘PN+1’_N_1(X,)’) ) (1.:55) (—%Z)
o1, N1 009) = R ED

We are thus led to a system of (2N+3)2 equation in (2N+:’>)2 unknown.
By taking h = [nd/ (aN)]l/ s the solution of this system yields the approximation
(7.24) which approximates u on S to within an error of O(Ne (mdoN)s) .
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For example, if V 1is the unit ball and g(x,y,z) = a(l-SzZ) o 8 .,

where o = const., then (7.17) has the solution

(7.26) u(x,y,z) = xe+y®-2224k

in V , where k 1is an arbitrary constant. This problem was solved in [ 36 ]
by use of the approximation (7.24), and the resulting matrix equation was
then solved by use of Singular Value Decomposition [15]; by taking N=2 and
using the symmetry of the problem made it possible to reduce the solution to

that of a singular system of equations of order 13, yielding 3 places of

accuracy.

EXAMPLE 7.4: Other Examples.

(a) In [8] the Helmholz problem Au = kzu subject to Dirichlet boundary
conditions was solved on the exterior of a bounded region W in the plane,
via an integral equation method, using the methods in Sec. 4. It was assumed
that the boundary L of W consists of a finite number of analytic arcs Lj :
with the property that the mappings ¢j as well as the function g(¢j) are
in B(D)F\Lipa[—l,ll , where

(7.27) 65+ L1~ Ly

where 0 is defined as in (4.9), and where g denotes the boundary value of

u on L.

(b) In [19] the Hilbert problem

(7.28) F (t) = G(t)F_(t) ; H{t) , tel




oy

~00

was solved in the complex plane via methods in Sec. 4. It was assumed in [19]
that L consists of a finite number of non-overlapping closed contours in the
complex plane, and that these are made up of a finite number of analytic arcs
Lj which can be defined in the same fashion as the Lj in (a) above, and such
that each of the functions G(¢j) and H(¢j) are in B(D)f\Lipa[-l,l] , where
D 1is defined in (4.9).

(c) In |32], the problem of determining the three-dimensional electric field
scattered by an axially symmetric body V in a plane wave was solved via the
solution of an integral equation over the surface S of B via the methods
of Sec. 4 of this paper. It was assumed in [32] that the surface S is

described by
S = {(x,y,2) : xX’#y” = £(2))
where f € B(D) , P as in (4.9), and such that on (-1,1)

a (o}
0< G-z’ “S ) £G4 2.

where oy and a, are 5% i (0P 9
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8. COMPUTER IMPLEMENTATION AND PITFALLS.

8.1 Computer Algorithms.

Some of the formulas of the previous section have already been implemented
via computer programs. Included among these is an automatic integration pro-
gram over an arbitrary interval (a,b) using the formulas in Sec. 4.2 [35],
programs for evaluating each of the transforms (5.1)-(5.4) [22], programs for
the approximate solution of each of the problems of the examples in Sec. 6, and
programs for the approximate solution of the problems in Examples 2, 3 and 4
in Sec. 7, as well as in programs for computing the solution to a Hilbert
problem.

Let us briefly describe the implementation of the quadrature program [35].

Let f € B(D) , and consider the approximation

»  f(z, (h))
(8.1) J dx =T () =h | —K
r k=-© ¢'(z) (h))
Let us also set
o f(z,, .(h/2))
(8.2) M () = h ) 2k-1
k=-o ¢'(22k'1(h/2))
so that:
(8.3) T2y = 3 [T (OM (D]

The error bound in (4.31) shows that when h is replaced by %h , the correct
number of significant figures in the approximation (8.1) double.
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i Assume then, that we start with h=1 (say) and then compute Th(f) . Next,

‘ we compute Mh(f) , so that if the difference

i (8.4) D - M =c
|
i then
(8.5) Ty = 2T + M (D] = 0?) <e

In practice we cannot sum all of the terms in the infinite sums (8.1) and

| (8.2). The assumption that

(8.6) £ 2 g™y on £, a>0
¢'(x)

then offers a convenient stopping criteria in approximating the infinite sums.
Suppose that we stop the summations (8.1) for k >0 when

(8.7) £(zy)
¢' (zy)

(= 0(e™ ™M) < ¢/3

Then we may expect that

'h T fc_zkﬂ l < 0(h e'°‘kh) '
k=N+1 ¢'(2k(h)) T k=N#1
L
h e-a(N+1)h
(8.8) = 0(—1—:&}‘-—- )
-e i

= 0(e™™My < o(e)

That is, we may expect the tail of the series to be of the same order of magnitude

as the last included term. In order to avoid stopping the algorithm at or

near a zero of f in practice, we make the more reliable test

- ‘ Y - . 5 ? ’ y ,"'3"":4"?‘;“- .,.9 s :!;' R ”9:,%:.%«@:;?;&;»%%’““ Vo g N
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|£(zy) | : | £(zy,,) | s | £(zy,5) | < B
6" (z)) 0" (zypp) 0" (249

(8.9)

A similar test is carried out for negative k since the function f(x)/¢'(x)

may converge to zero at different rates, as x»*a or as x»b along T .

These ideas form the basis for the automatic integration algorithm in [35].

A e S
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8.2. Pitfalls in Computation.

The accuracy of the formulas of this paper, in spite of singularities at an
end-point of an interval is based on our being able to accurately compute the

function values at the points 2 - Consider, for example, the evaluation of

1 -
(8.10) I= f (l-xz) dx
-1

via the formula (4.34), in 16 significant figure floating point arithmetic [51].
The points zk(h) = [ekh-l]/[ekh+1] Ccluster about +1 (rsp.-1) for k large
and positive (rsp. negative), and the formula (4.34) may fail, due to roundoff
error, resulting in the inaccurate evaluation of [l-zkz(h)].;i . For example,
if we take h = log2 , k=54 , the computed value of zk(h) is

199999 99999 99999 0 , so that the computed value of (1-z %)™ is

.707---x10% . The actual value of (l-zkz)'% computed by means of the formula

(1- 2y ) e (1+e )/(Zekhlz) is .671-~x108 . Hence due to roundoff, the
term
kh % -kh -
2e 2 2e 2
(8.11) h {-—-—EE—E-[I- ] ¢ g7 (1-2,°] }
(1+e™) & (1+e ™) %
contributes as error of .554---"1.0'10 to the numerical approximation.
54 k+1 -k
(8.12) togh | —Eiey [1- (2 1) ]
k=-54 (1+2 )

of I . That is, it is possible to achieve no more than 10 significant figures
of accuracy. If we ﬁad carried the summation from -58 to 58 instead of

from -54 to 54 the situation would have been considerably worse. In that

-—“.“.. e ” 0 AR . - .pm hﬁ. *’» ‘;b"}”ym"‘%
. ] ‘ &’ T -ﬂ"rr d

ot e A UL v vt cossoss oo o e B s e s . — .
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case z.g = 12°8-11/12°841] is computed to be 1.00000 00000 00000 so that an
error message results, since the computer cannot evaluate (1.C-1.0) % .

We emphasize that the above difficulty can be easily remedied, simply by
computing the terms [1-zk2]"’ by means of the expression [1+ekh]/(2ekh/2) .

Similarly, the formula (see Eq. (4.14))

(8.13) 2y = log[ekh+/ l'rezlai ]

is not an accurate formula for computing 2 for the approximations (4.29),

and (4.38) when e < .01 , in that case the formula

_ kKt 1.3%h 3 _Skh 5 _7kh
(8.14) =€ - 328 *30 ¢ " 17 © . T

is preferabie.

Accurate computation of the coefficients is equally important for the case
of the formulas in Sec. 4.3, used for the approximation of derivatives over
finite and semi-infinite intervals. For example, a small error in the compu-
tation of f(zN) or (l-zNz) can cause a large error in the approximation

of a derivative in the expression

N £(z) m .
(8.15) £x) = ] —z-k—m (1-x%) " S(k,h)elog £X

N (1

used to approximate f,f',...,f(m) on [-1,1] .

There is one additional pitfall which we have encountered. For example,
let D be defined as in (4.9), let £& B(D) , and let |£(x)|S C(1-x") on
(-1,1) , where C > 0 . Then the approximation

N 1+x
(8.16) f(x) = k-ZN £(z)S(k,h)°log (1=3)

G TR i i B RS o S el s
AL iy LISV i
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in which h = (wd/N) 1/2 . Ty ™ (ekh-l)/ (ekh+1) is accurate for moderate values
of N if the numbers f (zk) are computed accurately, and moreover, the

approximation

'f(zN)
(8.17) £ E—ITZN—

is then accurate. Suppose, for example, that f is of the order of 1 , and

that the approximation (8.16) is within 107>

6

of £ forall x€ [-1,1] .

An error of 10~ in the computed values of 2 would not change this accuracy.

6

However, since f(x) + 0 as x > 1, we may have £(z,) = %—40’ , and an

error of 10°°

in f(zN) will produce a very large error in the approximation
(8.17). We must therefore warn against using the computed f( z.k)---especially
those obtained as an approximate solution to a problem via the use of
S(k,h)°¢(x) as basis functions--to approximate the derivatives of f at or

near an end-point of an interval.

TR Sy R T - -;”M“i‘w“’j pe, RS A - W‘M BT W
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9. OPTIMALITY OF THE APPROXIMATIONS.

The results of this section show that the O(e'cn ) rate of convergence
of the methods of this paper cannot be improved. While the functions S(k,h)°¢
form a basis giving this rate of convergence, they are not the only ones;
rational functions may also be used to achieve this rate of convergence [48,52].

The order of the error of approximate methods based on polynomials and
trigonometric functions is well known (see e.g. [2]) for many classes of .
functions. We briefly cite some of these, for purposes of comparing methods of
approximation with or without the presence of a singularity.

Let Pn denote the family of polynomials of degree <n .

THEOREM 9.1 [2]: Let p>1, and let €5 denote the ellipse with foci at

t1 and sum of semi-ones equal to p . Let f be analytic and bounded in €,
Then

(9.1) inf sup [£(X)-p(x)| = 0(p™) , o=
pEPn -1<x<1

That is, the error of approximation converges to zero at the o(e™ ™

rate. The rate of convergence (9.1) is best possible with regard to order.
The rate of convergence of the error of approximation by polynomials is

considerably slower if a singularity is present at an end-point of an interval.

An example of this is illustrated in the following theorem.

THEOREM 9.2 [2]: Let 0<a <1 . Then there exist positive constants C
and C2 such that

1

e — oy S e e o B
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Cc
(9.2) + < mf s |0a)%pw)| g
n pean -1x<1

AR

The same drastic change in the rate of convergence depending on whether
a singularity is present or absent occurs also for quadrature formulas constructed
on the basis of the formulas being exact for polynomials of a certain degree.
For example, let the numbers xj (n) and w.(n) TS RN R T SR

J
be the Legendre-Gauss nodes and weights, so that the approximation

1 n
o (n) (n)
(9.3) J_l f(x)dx = jzl wj f(xj )

is exact wherever f € P, .1+ Then we have

THEOREM 9.3 [40]: Let f satisfy the conditions in Theorem 9.1. Then

1 n
(9.4) f f0dx - 7 w, ™ £x, ™) = 000" ™) | o
<3 j=1 J J
The number o on the right hand side of (9.4) cannot be replaced by a
smaller number.
The presence of a singularity of f at $1 changes this rate of convergence

drastically, as illustrated in the following theorem.

’

THEOREM 9.4 [10]: Let wj(“) and xj(“) be defined as in (9.3). If a >0

and not an integer, then
1
f 1-0%tax - § w,® A
-1 j-l J

(9.5)

~ tla
n

y @

where c(a) depends only on a.

a . X o "
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For the methods of this paper, the error converges to zero at the o(e ™™ )
rate, whether or not singularities are present at an end-point of an interval.

The best value of ¢ in this O(e-cn!i)

rate depends somewhat, but only mildly,
on the particular type of singularity.

We may therefore seek after methods which work well in spite of the presence
of a large class of singularities, and then try to determine which, among these
are the best.

Let us first choose a space of functions with singularities, for purposes of
approximation on ([-1,1] .

If p>1, the space Hp(U) is a convenient and well known space of
functions in analytic function theory. Hp(U) consists of the family of all
functions f that are analytic in the unit disc U in the complex plane, and

for which

yl/P

|

1

2m cx D
(9.6) 181 = lin [’Efo 1£rel®)|” 8] <=

r~+1
Thqs Hp(U) contains functions which may or may not have singularities at the
end-points of the interval [-1,1] , such as f(x) = (l-x)'a(1+x)'310g(1-x) ’
where a,8<1/p , or f(x) = s> , etc. The closer p is to 1 , the
larger the space HP(U) , since, for example, if 1 <'p'<p , and if
fe Hp(U) , then f € Hp,(U) , whereas Hp.(U) has in it functions that are
not in HP(U) , such as, for example, the function £f(x) = (l-xz)'l/p -

Next, given the space Hp(U) , let us consider the error of approximation
(9.7 I(f) - Q,(f)

where f € HP(U) ’

e ——
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1

T, @ gy, @)
(9.8) 1® = [ 00ac, Qo = 1w o ™)

and where w.(n) eq, x.(n) € U. Let us set

o e i sup 1(6) - Q ()
p,n WJ.(n)eq:’xj(n)‘EU fEHp(U),ﬂflpal‘ Q ’

The numbers cp & determine the best possible rate of convergence to zero of
’

the quadrature error. At this time, the exact values of the op & and the
b}

: " . pra ;
corresponding quadrature rules Qn'Qn* for which |I(f) Qn 0] £ op,n" flp
for all f € Hp(U) are not known. A number of papers have been written on
the estimation of upper bounds for crp 5 (4,5,17,20,23,50,52,58] and some have
also been written on lower bounds [4,50,52]. The results of the following

theorem give thé best bounds known to date.

THEOREM 9.5 [52]: Let g=p/(p-1) . Given any € > 0 there exists an integer

n(e) > 0 such that whenever n > n(e) , then

(9.10) exp[-(51/2v+e)n1/2] < %,n . exp[-{—(;:—);; - s}nl/Z] .

We remark that the formulas (4.34) of the present paper converge at the
rate on the extreme right hand side of (9.10), for every p > 1 , and the
formulas in [4,48] also converge at this rate. No formulas are known at this
time which converge at a faster rate.

Next, for purposes of interpolation on [-1,1] , let p>1, let
Hp*(U) denote the family of all functions g such that f € HP(U) , where

£(z) = g(2)/(1-2%) , and let H*(U) be normed by |g|; = 1€, vhere Ifl

; y ey e ' Lok W e
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is defined in (4.6). Let {Tn}“ be a linear interpolation scheme defined
n=1
by

n
= (n)
(9.11) T,(8) (%) jgl g(x; ey 50

where xJ. (n) U , where ¢nj is analytic in U for each n and j , and

such that

9.12 IT I* < Clgl#*
(9.12) n(@)15 < Clgl?
for all g€ H;(U) , where C 1is a constant independent of n . Let us set

(9.13) T = inf sup1 lf(x)-Tn(f) %3 .

R fGH*(ISJl)J!,)Ilfl*ﬂ -1<x<
n P P

THEOREM 9.6 [S2]: Given any € > 0 , there exists an integer n(g)>0 , such

that whenever n > n(e) and q=p/(p-1) ,

1/2 ™ 1/2
I 8% S exp[°(2—;; “ejn" "]

q

(9.14) exp(- (5 2n+edn

These upper and lower bounds'are the best ones known to date. The formulas
(4.19) of the present paper with ¢(x) = log[(1+x)/(1-x)] converge at the
7 rate on the extreme right of (9.14). A rational function has also been con-
structed for interpolation of functions in H; (U) over [-1,1] [52]; this
also converges at the rate on the extreme right of (9.14). No formulas are
known at this time which converge at a faster rate.
Theorem 9.1-9.4 show that the formulas of this paper are not as good as ~
polynomials in the absence of singularities, but they are much better when

singularities are present.
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In [52] one finds definitions of other H h spaces of functions with the
t property that each of the formulas of Sec. 4.2 (rsp. Sec. 4.1) enjoys the
Oerpl-(—Ly; <) nl/2) ik
q

(rsp. O(exp[-{-zig e} n rate of convergence in
q

these spaces.
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